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Abstract

This paper presents Modest (MOdeling and DEscription language for Stochastic
Timed systems), a formalism that is aimed to support (i) the modular description
of reactive system’s behaviour while covering both (ii) functional and (iii) non-
functional system aspects such as timing and quality-of-service constraints in a sin-
gle specification. The language contains features such as simple and structured data
types, structuring mechanisms like parallel composition and abstraction, means to
control the granularity of assignments, exception handling, and non-deterministic
and random branching and timing. Modest can be viewed as an overarching no-
tation for a wide spectrum of models, ranging from labeled transition systems, to
timed automata (and probabilistic variants thereof) as well as prominent stochas-
tic processes such as (generalized semi-)Markov chains and decision processes. The
paper describes the design rationales and details of the syntax and semantics.
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1 Introduction

Background and motivation. The prevailing paradigm in computer science to
abstract from physical aspects is gradually being recognized to be too limited
and too restricted. Instead, classical abstractions of software that leave out
“non-functional” aspects such as cost, efficiency, and robustness need to be
adapted to current needs. In particular this applies to the rapidly emerging
field of “embedded” software [19,29,48].

Embedded software controls the core functionality of many systems. It is om-
nipresent: it controls telephone switches and satellites, drives the climate con-
trol in our offices, runs pacemakers, is at the heart of our power plants, and
makes our cars and TVs work. Whereas traditional software has a rather trans-
formational nature mapping input data onto output data, embedded software
is different in many respects. Most importantly, embedded software is subject
to complex and permanent interactions with their – mostly physical – environ-
ment via sensors and actuators. Typically software in embedded systems does
not terminate and interaction usually takes place with multiple concurrent
processes at the same time. Reactions to the stimuli provided by the environ-
ment should be prompt (timeliness or responsiveness), i.e., the software has to
“keep up” with the speed of the processes with which it interacts. As it exe-
cutes on devices where several other activities go on, non-functional properties
such as efficient usage of resources (e.g., power consumption) and robustness
are important. High requirements are put on performance and dependability,
since the embedded nature complicates tuning and maintenance.

Embedded software is an important motivation for the development of mod-
eling techniques that on the one hand provide an easy migration path for
design engineers and, on the other hand, support the description of quanti-
tative system aspects. This has resulted in various extensions of light-weight
formal notations such as SDL (System Description Language) and the UML
(Unified Modeling Language), and in the development of a whole range of
more rigorous formalisms based on e.g., stochastic process algebras [36,38], or
appropriate extensions of automata such as timed automata [3], probabilistic
automata [54] and hybrid automata [2]. Light-weight notations are typically
closer to engineering techniques, but lack a formal semantics; rigorous for-
malisms do have such formal semantics, but their learning curve is typically
too steep from a practitioner’s perspective and they mostly have a restricted
expressiveness.

In this paper, we propose a description language that is intended to have a rigid
formal basis (i.e., semantics) and that incorporates several ingredients from
light-weight notations such as exception handling 2 , modularization, atomic

2 Exception handling in formal specification languages has received scant attention.
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assignments, iteration, and simple data types. The semantics enables formal
analysis and provides a solid basis for the development of tool support whereas
the light-weight ingredients are intended to pave the migration path towards
engineers. First industrial case studies [8,10] with our tool environment [9]
confirm that the rigid approach towards the semantics results in trustworthy
analysis results, obtained via discrete-event simulation. Standard simulation
environments are risky to use instead as they may yield contradictory results
even in simple case studies [17].

Issues of concern. Important rationales behind the development of the de-
scription language, called Modest (MOdeling and DEscription language for
Stochastic Timed systems), have been:

• Orthogonality. Timing and probabilistic aspects can easily be added to (or
omitted from) a specification if these aspects are of (no) relevance.

• Usability. Syntax and language constructs have been designed to be close to
some other commonly used languages. The syntax resembles that of the pro-
gramming language C and the modeling language Promela [39]. Data modu-
larization concepts and exception handling mechanisms have been adopted
from modern object-oriented programming languages such as Java. Process
algebraic constructs have been strongly influenced by FSP (Finite State
Processes [44]), a simple, elegant language that is aimed at educational
purposes.

• Practical considerations. The design of the language and the development
of accompanying prototypical tool support have taken place hand-in-hand.
Considerations about the tool handling of language constructs have been
one of the driving forces behind the language development.

• Expressiveness. Several concepts – all well studied and widely accepted in
the fields of e.g., computer-aided verification and concurrency theory – have
been considered:

(1) Action nondeterminism is often used in concurrent system design to leave
parts of the description underspecified or to allow different reactions on
stimuli from the embedding environment, and is an appropriate means
to reflect that the order of events in concurrent executions is out of the
control of a modeler.

(2) Probabilistic branching is a way to include quantitative information about
the likelihood of choice alternatives. This is especially useful to model
randomized distributed algorithms (e.g., coin flipping), and to represent
(randomized) scheduling strategies.

(3) Clocks are a means to represent real time and to specify the dynamics of
a model in relation to a certain time or time interval.

(4) Delay nondeterminism allows one to leave the precise timing of events un-
specified, and only indicate a lower- and upper-bound on their occurrence

Notable exceptions are e.g., Enhanced-LOTOS [32] and Esterel [7].
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time.
(5) Random variables are used to quantify the likelihood of an event to happen

after or within a certain time interval.

While (1) and (2) affect the dynamics of a model via the (discrete) set of next
events, (4) and (5) are means to affect the model dynamics by the (continuous)
elapse of time. Thus, (1) and (4) describe two distinct types of nondetermin-
ism, while (2) and (5) represent distinct types of probabilistic behaviour. It
is our belief that each of these concepts is indispensable when striving for
an integrated consideration of quantitative system aspects during the entire
system design trajectory.

Organization of the paper. Section 2 introduces the language ingredients of
Modest by presenting a compositional model of a soccer match. Section 3
defines stochastic timed automata, a model that allows for the symbolic (i.e.,
finite) representation of continuous-time stochastic phenomena. This model is
used as the semantic basis for Modest. Section 4 presents the syntax of Mod-
est and its operational semantics that associates with each Modest process
a stochastic timed automaton. Section 5 is rather technical and presents the
formal interpretation of stochastic timed automata. Whereas these automata
are mostly finite-state, their semantics is an infinite (probabilistic) transition
system due to the continuous nature of time. Section 6 shows how some well-
known constructs (like while-loops and location invariants of timed automata)
can be modeled in Modest. To conclude, Section 7 discusses the motivations
for the design decisions that have been made while developing Modest, and
Section 8 concludes the paper.

This paper is an extended and revised version of [25].

2 A Gentle Language Primer

This section introduces the core language features of Modest by modelling an
abstract view on a soccer match between two teams. Although this example is
not a typical software engineering example, it illustrates almost all ingredients
of Modest in a rather natural way.

A Soccer match is played by two teams of 11 players each. There is one ball
to play with and a referee who occasionally blows the whistle and keeps track
of the total playing time of 90 minutes. The team that has the lowest score
at the end of the match or has no players left on the field looses the match.
In the following, the potential evolution of a soccer match is described using
Modest. The description heavily uses its compositional features.
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int score[2];
int players[2];
players[0] = 11;
players[1] = 11;

To start with, in order to keep track of the score and the
number of players left on the field, two arrays of integers
are introduced. The array score has dimension 2. score[0]
(score[1]) equals the number of goals made by team 0
(team 1). In Modest, newly introduced integers are set
to zero by default. players[0] (players[1]) is the number of players of team 0
(1). Both fields are set explicitly to 11, the number of players initially. In the
following, the teams are distinguished by the numbers 0 and 1.

process FoulPlay(){
clock c;
float delay;
{ delay = Uniform(2, 5), c = 0 };
when(c == delay)

urgent(c == delay)
throw foul

}

One of the main activities of
players during a match is fouling
other players. To describe this
behaviour, the process FoulPlay
is introduced. This process de-
scribes that a team tries to foul
other players, but before the foul
happens some time passes that
is uniformly distributed over the
interval [2, 5]. To measure this time, Modest provides the concept of clocks,
real-valued variables which increase linearly and continuously with time by a
constant rate 1. First, the clock c is reset to zero, and a random sample from
a uniform distribution function on the interval [2, 5] is drawn and assigned
to the float variable delay. Assignments that are enclosed in { . . . } are
executed atomically. To measure that delay units of time have passed, the
conditional constructs when(·) and urgent(·) are used. The Boolean expression
in a when(·) construct determines when the process following the construct
is allowed to be executed. The Boolean expression in an urgent(·) construct
describes when the process following the construct is required to be executed
at the latest. Since Boolean expressions may refer to clocks, the evaluation of
the expressions might change over time. In this example, the expressions in
the when(·) and urgent(·) construct are the same: c == delay. This means that
as soon as c == delay holds, the following process has to be executed with no
further delay. The process action to be executed is the construct throw foul ,
which throws the exception named foul . Exceptions signal certain exceptional
conditions in the execution of the process. An exception may be caught out-
side the process it was thrown. Exception handling will be further discussed
below.

The ball, once possessed by the team with number team, is kicked away, either
towards another player or in the goal. This is described by the process Pass.
Pass takes one parameter, the integer team, indicating which team is currently
playing the ball. The ball is kicked away, as indicated by action kick , and is
either passed to another player (of the own or the opponent team) or goes into
a goal (of the own or the opponent team). Note that in absence of a when- and
urgent-construct, the action kick is not restricted in any way, however, it is
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also not required to happen. The interpretation is that it happens sometime,
but it is unspecified when this would be.

process Pass(int team){
do {

:: kick palt {
:0.9 · players[team]:

self
:0.9 · players[1−team]:

other ; break
:0.1 · players[team]:

{ score[team] += 1 };
goal ; other ; break

:0.1 · players[1−team]:
{ score[1−team] += 1 };
goal ; break

}
}

}

The four possibilities are de-
scribed by means of the
palt construct, which de-
scribes a probabilistic choice
between alternatives. The
branching probabilities are
implicitly determined by so-
called weight expressions, which
are arithmetic expressions
(embraced by colons) that
evaluate to non-negative val-
ues. The probability of a
branch to happen is given
by the weight of this branch,
divided by the sum of the
weights of all branches of the
palt construct. Since weight expressions are allowed to refer to variables, the
weights, and therefore, the branching probabilities might change during the
execution. Let pall = players[team] + players[1−team]. In the example, with
probability 0.9 · players[team]/pall , the ball is passed to a player of the own
team (indicated by action self ), with probability 0.9 · players[1−team]/pall to
a player of the opponent team (action other), and so on. Since the number
of players on the field varies, the probabilities where the ball eventually ends
up vary as well. In particular, the larger the difference between the number of
players of the two teams get, the smaller the probability for the small team
to keep the ball in possession and to score.

The described palt in process Pass is embedded in a do construct. The do
construct has in general two purposes: expressing nondeterminism between
different processes, and restarting itself once a chosen process has terminated.
In case of process Pass the do indicates that the probabilistic choice should
be repeated indefinitely. This infinite behaviour is aborted on executing the
construct break, and resumed with the process following the do construct (if
any). In our example, this occurs whenever either the ball is lost to the other
team or a goal is scored.

process Play(int team){
gotBall ; Pass(team); Play(team)

}

A team can only pass if it possesses
the ball. This is described by the pro-
cess Play: whenever action gotBall is
executed, process Pass is invoked. Subsequently, process Play is invoked re-
cursively. In addition to the do construct, recursion is thus another way to
specify infinite behaviour.
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process Team(int team){
par {

:: Play(team)
:: FoulPlay(team)

}
}

The behaviour of a complete team can be de-
scribed now as the parallel composition of two
processes, as done in process Team: the process
Play describing the handling of the ball, and
the process FoulPlay describing the handling
of the opposite team. Using parallel composi-
tion to describe the behaviour of a team is justified, since usually only one
player can handle the ball, whereas the others can still foul each other.

The two different teams are instantiated as follows:
process Team0(){

hide{kick , self , goal}
relabel {other , gotBall , foul}
by {0to1 , 1to0 , foul0}

Team(0)
}

process Team1(){
hide{kick , self , goal}

relabel {other, gotBall, foul}
by {1to0 , 0to1 , foul1}

other ; Team(1)
}

Basically, both Team0 and Team1 describe the same behaviour as Team, how-
ever, there are two important differences:

(1) Some actions are hidden, i.e., they are renamed to the internal action
τ . This is the case for actions kick , self , and goal in either process. The
action τ is invisible to other (parallel) components and thus cannot be
subject to synchronization.

(2) In both processes, actions are relabelled: in case of Team0, action other
is renamed into 0to1 , and gotBall into 1to0 . Similarly, in Team1, other is
renamed into 1to0 , and gotBall into 0to1 . The exception foul is renamed
into foul0 and foul1 , respectively.

process Match() {
try {

par {
:: Team0()
:: Team1()

}
}
catch(foul0 ){

players[1] −= 1; Match()
}
catch(foul1 ){

players[0] −= 1; Match()
} }

Both processes Team0 and Team1 can
now be put together to describe a com-
plete match as defined by the pro-
cess Match. The processes Team0 and
Team1 are put in parallel inside a par
construct. Both processes run indepen-
dently from each other, but are synchro-
nizing on actions with the same name.
In case of Team0 and Team1 these ac-
tions are 0to1 and 1to0 . This explains
why action other in process Team0 and
action gotBall in Team1 have been re-
named to 0to1 : both processes synchronize on these actions, and model the
passing of the ball from team 0 to team 1. The same holds for the reverse
direction.
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The parallel composition forms the try-block of the enclosing try/catch con-
struct, which is used for the handling of exceptions. Exceptions can be caught
by an exception handler, which is introduced by the keyword catch. In the
given example, there are two exception handlers, one for exception foul0 , the
other for foul1 . In both handlers, the number of players of the respective
opposite team is decremented by one, and the Match process is restarted.

process Referee() {
clock x = 0;
par {

:: when(x == 90)
urgent(x == 90)

throw gameover
:: when(players[0] == 0 ∨ players[1] == 0)

urgent(players[0] == 0 ∨ players[1] == 0)
throw noplayers

}
}

Note that in the
given specification,
Team0 always gets
the ball first, since
Team1 is started
unconditionally with
action other . This
is a simple way
of avoiding that
both teams wait
for their competi-
tor to pass the
ball, although neither of them possesses it. This would yield a deadlock.

try{
par{

:: Match()
:: Referee()

}
}
catch(gameover){

swap shirts
}
catch(noplayers){

τ
}

The process Match describes already a soccer
match quite accurately, however, two things have
to be taken care of: first, process Match describes a
never-ending match, and second, it is possible for
a team to have a negative number of players. Both
aspects are unrealistic. To take care of these situ-
ations, a process Referee is introduced that moni-
tors the time that has passed so far. It also ensures
that there are always a non-negative number of
players on the field. This is again done by means
of exceptions: exception noplayers is thrown if a
team has lost all its players, whereas exception
gameover is raised when 90 minutes have passed.
The use of the urgent() construct guarantees that the match is ended once one
of these conditions hold.

Finally, the complete specification of the soccer match is a parallel composition
of the processes Referee and Match, nested inside a try-catch construct to take
care of the exceptions noplayers and gameover . In case no players are left, the
game simply stops. In case the game is played to its end, the remaining players
exchange their shirts.
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3 Stochastic Timed Automata

The semantics of Modest is defined using an operational model which is
based on timed automata [3,12], a well-studied and tool-supported symbolic
model for real-time systems. Timed automata extend labelled transition sys-
tems with clocks to measure the elapse of time, guards (that possibly refer
to clocks) to specify when an action is enabled, and urgency constraints to
force actions to happen at some ultimate time instant. As timed automata do
not have means to support probabilistic branching, such mechanisms have to
be incorporated for our purposes. To accommodate for random delays, sam-
ples from probability distributions can be assigned to variables. By comparing
clocks to such variables, actions can be delayed by a random amount of time.
This section defines the operational model, called stochastic timed automata,
and justifies the main differences with some existing models. We start by
defining expressions.

Expressions and assignments. We distinguish the following syntactic cate-
gories:

• Var is the set of (typed) variables ranged over by x, y and z. It is sometimes
convenient to distinguish the subset Ck ⊆ Var of clock variables, i.e., the
variables of type clock that are used to measure the elapse of time.

• Exp is the set of expressions containing variables (in Var). It is ranged over
by e. We distinguish the following subcategories of expressions:
· Sxp ⊆ Exp is the set of sampling expressions of the form sample(F ), with

the intended meaning that it samples a value for distinguished (random)
variable ξ /∈ Var according to distribution F . Formally, F is a function on
ξ (and possibly variables in Var) such that for every instance of variables
in Var, F is a distribution function on ξ.

· Bxp ⊆ Exp is the set of Boolean expressions. These expressions do not
contain sampling expressions. It is ranged over by b, d, and g.

· Axp ⊆ Exp is the set of arithmetic expressions. These expressions do not
contain sampling expressions. It is ranged over by w.

• Asgn is the set of assignments ranged over by A. An assignment is a function
that maps variables onto expressions (in Exp). { x1 = e1, . . ., xn = en }
denotes the unique assignment A ∈ Asgn defined by A(xi) = ei (for 0 < i 6
n), and A(y) = y if y 6= xi for all i.

• Act is a set of action names ranged over by a.

Variables, assignments and expressions serve the usual purpose. Variables may
occur in expressions and expressions may be assigned to them. Sample expres-
sions are used to draw samples from distributions and are used to model ran-
dom delays. For modelling convenience, some standard probability distribu-
tion functions such as exp(rate) and normal(avr , dev stndr), are supported.
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Boolean expressions are used in guards and urgency constraints. Actions play
the same role as in labelled transition systems.

Example 1.
Some expressions and assignments in our soccer example are, for instance,
{ score[team] += 1, players[team] −= 1 }, which is an assignment, and
players[0] == 0∨players[1] == 0 which is a Boolean expression. An example
of an arithmetic expression is (team + 1)%2, and Uniform(2, 5) is a sample
expression, which is to be understood as an abbreviation of sample(F ) where

F (ξ) =





0 if ξ < 2,

(ξ − 2)/3 if ξ ∈ [2, 5],

1 if ξ > 5.

�

The model. A stochastic timed automaton consists of control states, called
locations, that are connected by edges. For ease of understanding, let us first
assume that there is no probabilistic branching. In this simple case, edges
would be labelled by four attributes:

(i) an action a to be performed,
(ii) a guard g specifying when the edge is enabled,
(iii) an urgency constraint d specifying when the edge ultimately should be

executed (if at all), and
(iv) a set A of assignments to be carried out atomically.

The edge a,g,d,A- in location s is enabled whenever the system is in control
state s and guard g holds given the current values of the variables – includ-
ing the clocks. If, in addition, urgency constraint d holds, then the system

is obliged to take the edge a,g,d,A- before time progresses. Thus, time may
progress in location s as long as no urgency constraint of one of its outgoing

edges holds. On “executing” s a,g,d,A- s′, action a is performed, the assign-
ments in A are carried out atomically, and the system moves to control state s′.
Note that by means of this mechanism, variables may be tested (in a guard)
and updated (in an assignment) in a single atomic step. This test-and-set
mechanism is, for instance, useful for modelling locks and semaphores, see
e.g., [6, pp. 43].

In order to deal with probabilistic branching, the situation is somewhat more
complicated. The target of an edge is not just a control state, but rather a
probability distribution over control states, or more precise, a probability dis-
tribution over pairs 〈A, s〉 of assignments and control states. This is because

10



different probabilistic branches may trigger different assignments and succes-
sor control states in one edge. The actual probability for each such pair is
determined by weights. Suppose s can either move to control state s′ (with
weight w′) or to s′′ (with weight w′′) where s′ 6= s′′, while performing assign-
ment A′ and A′′, respectively. If weights w′ and w′′ are just constants, the
probability to “move” to 〈A′, s′〉 equals w′

w′+w′′ , and the probability to move

to 〈A′′, s′′〉 is w′′

w′+w′′ . In this case, the likelihoods can be determined easily. As
we support weights that are expressions containing variables – possibly even
clocks – the situation is a bit more complicated. Rather than working with
constant weights, weight expressions are used. Intuitively speaking, these are
a kind of symbolic probability distributions, over pairs of assignments and

(target) control states. On taking the edge s a,g,d- W, the system moves to
control state s′ assigning values according to assignment A′ with a probability
that is determined by W(〈A′, s′〉). For the above example with two possible

successor control states, this probability is v(w′)
v(w′)+v(w′′) for control state s′ (and

similar for s′′), where v(w) denotes the value of w after instantiating the vari-
ables occurring in w given the current variable valuation v, i.e., the valuation
in control state s. In the sequel, Wxp denotes the set of weight expressions
(on pairs of assignments and control states). Formally, a weight expression
W is a mapping from an assignment and a control state onto an arithmetic
expression (in Axp) and it only makes sense in valuation v if v(W(A, s)) > 0
for all A and s, and v(W(A, s)) > 0 for some A and s.

We are now in a position to formally define the semantical model for Modest.
Control states are, from now on, referred to as locations.

Definition 1.
A stochastic timed automaton (STA, for short) is a triple (Loc, Act, -), where
Loc is a set of locations and - ⊆ Loc × (Act × Bxp × Bxp) × Wxp is the edge
relation. �

Example 2.
Figure 1 depicts a stochastic timed automaton with 7 locations (i.e., control
states). The automaton has a distinguished initial location indicated by an
incoming arrow without source. Empty assignments, ttrue guards and ffalse
urgency constraints are omitted from edges. Most edges lead to trivial weight
expressions, where only one pair of assignment and location gets probability
1 assigned. On the occurrence of action kick a probabilistic choice appears
with four branches, indicated by the circle fragment connecting the weighted
alternatives of assignments and locations. The automaton in fact corresponds
to the process instantiation Play(0) of our running soccer example where, for
convenience, players[i] is abbreviated by p[i]. In Section 4, it will be explained
how an STA is obtained from a Modest specification. �
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gotBall , team = 0

self

goalτ, team = 0

goal

other

kick

0.1·p[team]

0.9·p[team]

0.9·p[1−team]

0.1·p[1−team ]

score[team] += 1

score[1−team] += 1

Fig. 1. Stochastic timed automaton for process invocation Play(0).

It is worthwhile to remark that STA provide a symbolic framework to represent
stochastic timed (and real-time) behaviour in much the same way as timed
automata represent real-time behaviour in a symbolic manner. Whereas the
semantics of timed automata is typically described by (infinite) timed tran-
sition systems, the interpretation of a stochastic timed automaton is defined
in terms of (infinite) timed probabilistic transition systems. This is further
explained in Section 5. In particular, this second level of semantics defines
exactly what the (probabilistic) interpretation of sampling is, and how weight
expressions are interpreted probabilistically. As a second remark, we like to
emphasize that STA have been developed to provide semantics to Modest.
These automata are closed under all operators of the language, most notably
parallel composition (with synchronization).

4 Formal Definition of Modest

4.1 Syntax

This subsection formally defines the syntax of Modest. We assume that the
set of actions Act is partitioned into: a set PAct of patient actions, a set IAct of
impatient actions, a set Excp of exception names, the unhandled error action
⊥, the break action [, and the unobservable (or silent) action τ . The differ-
ence between patient and impatient actions becomes clear when defining the
semantics of parallel composition. Exception names are distinguished actions
that are used for raising exceptions. Action [ is used to abort a loop, and τ
is the unobservable action that is standard in most process calculi to model
internal computations.
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We distinguish processes and process behaviours. A process is defined by:

process ProcName(t1 x1, . . ., tk xk) {dcl P}

where xi ∈ Var, ti (0 < i 6 k) are valid types, dcl is a sequence of declarations
possibly including process definitions, ProcName is a process name and P is
a process behaviour. For convenience, we will not dwell upon the syntax of
declarations and write process ProcName(x1, . . ., xk) {P} instead in the sequel.

Process behaviours are defined as follows. Let wi ∈ Axp, ei ∈ Exp (for 0 < i 6
k), b ∈ Bxp, and asgni an assignment of the form { x1 = e1, . . . , xn = en }.
Furthermore, let act ∈ PAct ∪ IAct ∪ {τ} be an action as in standard process
calculi (i.e., neither an exception, [, nor the unhandled error ⊥), H ⊆ PAct ∪
IAct be a set of observable actions, and excp, excpi ∈ Excp be exception names
(for 0 < i 6 k). Finally, let I and G be vectors of equal length in Act \
{[,⊥} such that all elements in I are pairwise different and different from τ .
The intention is that the mapping I(j) 7→ G(j), for 0 6 j < #I, defines a
relabelling function.

A process behaviour P is constructed according to the following grammar:

P ::= stop
∣∣∣∣ abort

∣∣∣∣ break
∣∣∣∣ act

∣∣∣∣ when(b) P

∣∣∣∣ urgent(b) P

∣∣∣∣ P1; P2

∣∣∣∣

alt{::P1 . . . ::Pk}
∣∣∣∣ do{::P1 . . . ::Pk}

∣∣∣∣ par{::P1 . . . ::Pk}
∣∣∣∣

act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk}
∣∣∣∣ ProcName(e1, . . ., ek)

∣∣∣∣

throw(excp)
∣∣∣∣ try{P} catch excp1 {P1} . . . catch excpk {Pk}

∣∣∣∣

relabel {I} by {G} P

∣∣∣∣ extend {H} P

Let us briefly describe the syntactic constructs. stop is the behaviour that can-
not perform any action and can be viewed as a deadlocked process. abort is the
behaviour that has aborted. Whereas stop cannot perform any action, the be-
haviour abort is only able to perform ⊥ (ad infinitum). break is the behaviour
that can only perform a break action [ and then successfully terminates. act
can perform a visible or invisible action, and then successfully terminates.
when(b) P behaves like P in case b holds. urgent(b) P imposes an urgency
constraint b on the behaviour P , i.e., P is forced to be executed as soon as
b holds. alt and do are the usual alternative and iterative statements. In case
several alternatives in an alt-statement are enabled one of these alternatives is
non-deterministically chosen. If no alternative is enabled, the statement blocks
and waits until one of its alternatives becomes enabled. Iterations successfully
terminate on the occurrence of a break action. Behaviours are put in parallel
using the par-construct. Parallel behaviours have to perform common actions
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jointly, and perform other actions autonomously. palt-behaviours execute ac-
tion act , perform the assignments in asgni, and evolve into behaviour Pi in
an atomic way. The probability to perform the i-th assignment and the move
to the i-th behaviour is determined by the weight expressions w1 through
wk. Behaviour throw(excp) raises an exception with name excp. Behaviour
try{P} catch excp1 {P1} . . . catch excpk {Pk} behaves like P , except that on
raising an exception excpi in P this is handled by the behaviour Pi. Processes
can be invoked in the usual way. Finally, relabel is the usual relabeling as
in traditional process algebra and allows for the renaming of visible actions
and exception names. Behaviour extend {H}P behaves like P . The only ef-
fect is that the actions on which P is forced to synchronize (with a parallel
behaviour) are extended with the actions in H.

4.2 Operational Semantics

The operational semantics of behaviour P is defined in terms of the stochastic
timed automaton (Loc, Act, -) where Act is the set of actions occurring in
P , Loc is the set of behaviors that are derivable from P—locations are thus
Modest terms—using the edge relation -, and - is the smallest relation
that is defined by the inference rules defined in the remainder of this section.

Let D(r) denote the deterministic weight expression defined by D(A, s) = 1
and D(A′, s′) = 0 for all A′, s′ 6= A, s. Intuitively speaking, the assignments A
and target location s are chosen with probability 1.

Basic actions. Behaviour stop does not perform any activity and thus does
not produce any transition.

abort is a process that indicates an unhandled error by persistent executions
of action ⊥. No assignments are executed. Its inference rule reads:

abort ⊥,tt,ff- D(∅, abort)

Action ⊥ is always enabled as the guard is true, and is not forced to occur at
any time as the urgency constraint is false.

break can perform the break action [ without restriction and then successfully
terminates. We use the symbol

√
to denote the successfully terminated pro-

cess. This process (that cannot be specified syntactically) does not have any
transition (like stop), but is used in other inference rules to distinguish suc-
cessfully terminated processes from non-terminated ones. The inference rule
for break reads:

break [,tt,ff- D(∅,
√

)
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act performs action act with no restriction and then successfully terminates.
No assignments are executed.

act act ,tt,ff- D(∅,
√

)

Actions indicate a particular activity a process intends to perform. If the action
act is visible it may be used for synchronization purposes.

Conditions. when(b) P restricts the first activity of P to be performed only
whenever b holds. As a consequence, guards from every edge leaving location
P are strengthened with b:

P a,g,d- W
when(b) P a,b∧g,d- W

Recall that W denotes a weight expression, i.e., a “symbolic” probability dis-
tribution.

urgent(b) P enforces the first activity of P to be urgent whenever b holds. It
imposes, so to speak, an extra urgency constraint b on the initial step of P . So,
if d is the urgency constraint of an edge leaving P , the new urgency constraint
is d ∨ b, i.e., either the transition becomes urgent because it was required to
become urgent in P , or because of the new requirement b. The inference rule
reads:

P a,g,d- W
urgent(b) P a,g,b∨d- W

Process instantiation. Let process ProcName(x1, . . ., xk) {P} be a process
that is part of the current specification. Without loss of generality, we as-
sume variable names x1 through xk to be unique 3 . The process invocation
ProcName(e1, . . ., ek) behaves like P where variables x1, . . ., xk are instanti-
ated with the values of expressions e1, . . ., ek under the current valuation of
the variables.

To accomplish this call-by-value approach, just before executing ProcName(e1,
. . ., ek), the assignments x1 = e1, . . ., xk = ek are performed atomically 4 . Op-
erationally speaking, all incoming edges of a process invocation are equipped
with the assignments to the parameters of the (possible) next process invo-
cation. Since ProcName(e1, . . ., ek) may occur within another statement, e.g.,
as an alternative in an alt- or a do-statement, a function A is used to collect

3 This can always be established by means of renaming.
4 It is important to realize that a call-by-name strategy is inadequate for Modest—
unlike the more traditional process algebra like CCS, CSP and LOTOS—due to
the presence of shared variables. Using a call-by-name paradigm would lead to
unintended read-write interferences.
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Table 1
The assignment collecting function

A(P ) = ∅ if P has one of the following forms:

act , act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk},

stop, abort, throw(excp), break

A(P ) = A(Q) if P has one of the following forms:

Q; Q′, when(b) Q, urgent(b) Q,

try{Q} catch excp1 {P1} . . . catch excpk {Pk},

relabel {I} by {G} Q, extend {H} Q

A(P ) =
⋃k

i=1 A(Pi) if P has one of the following forms:

alt{::P1 . . . ::Pk}, do{::P1 . . . ::Pk}, par{::P1 . . . ::Pk}

A(ProcName(e1, . . ., ek)) = {x1 = e1, . . ., xk = ek} ∪A(Q)

if process ProcName(x1, . . ., xk){Q}

all such necessary assignments (cf. Table 1). This function A is not used in
the inference rule of process instantiation but is necessary for edges that may
lead to a process call, cf. the inference rules for palt, exception handling, and
sequential composition furtheron in this section.

The inference rule for process instantiation is as follows:

P a,g,d- W
ProcName(e1, . . ., ek)

a,g,d- W
if process ProcName(x1, . . ., xk){P}.

Choice. Behaviour alt{::P1 . . . ::Pk} executes precisely one Pi, selected in a
nondeterministic fashion:

Pi
a,g,d- Wi (0 < i 6 k)

alt{::P1 . . . ::Pk} a,g,d- Wi

Sequential composition. P ; Q executes P until it successfully terminates. When
P terminates, it continues with the execution of Q:

P a,g,d- W
P ; Q a,g,d- W ◦ M−1

;
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where

M;(A, P ′)
def
=




〈A, P ′; Q〉 if P ′ 6=

√

〈A ∪ A(Q), Q〉 if P ′ =
√

The assignments that are carried out if P successfully terminates are those
that P performed on terminating together with A(Q). The latter assignments
are necessary whenever one of the possible initial behaviors of Q is a process
invocation. This is used to realize a call-by-value approach as discussed before.
Note that the inverse of M; is used in W ◦ M−1

; , to retrieve the wheight
expresion for the sequential composition from the the wheigts assigned by W
to the first component of a sequential composition.

Loop. Behaviour do{::P1 . . . ::Pk} repeatedly chooses an alternative Pi in a
nondeterministic manner. It terminates whenever one of the processes Pi exe-
cutes a break action ([). The semantics of do is defined using the auxiliary op-
erator auxdo which has two arguments: the actual behaviour and the behaviour
that needs to be resumed on successful termination of the loop behaviour. We
have:

do{::P1 . . . ::Pk} def
= auxdo{alt{::P1 . . . ::Pk}}{alt{::P1 . . . ::Pk}}

Behaviour auxdo{P}{Q} behaves like P as long as no break actions are per-
formed and terminates successfully if P performs a break (i.e., [). If P , how-
ever, successfully terminates, behaviour Q is resumed.

In the usual non-probabilistic setting, where transitions have behaviours as
targets —rather than (symbolic) probability distributions—, the intuitive be-
haviour above would be encoded by the following three inference rules:

P [,g,d- P ′

auxdo{P}{Q} τ,g,d- √

P a,g,d- P ′ (a 6= [ ∧ P ′ 6=
√

)

auxdo{P}{Q} a,g,d- auxdo{P ′}{Q}
P a,g,d- √

(a 6= [)

auxdo{P}{Q} a,g,d- auxdo{Q}{Q}

The first rule represents the break of the loop: as soon as the body loop exe-
cutes a break action, the loop terminates successfully. The other two inference
rules represent the execution within the loop. In particular, the second rule
states than once the loop body terminates its execution successfully, it should
be resumed from the beginning.

In a probabilistic setting it may happen that the loop body successfully termi-
nates with probability p or it continues doing something else with probability
1−p. In this sense, the first two rules are combined in only one that considers
these two cases in one probability distribution. In our case, probabilities are
represented symbolically by weight expressions.
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The inference rules are:

P [,g,d- W
auxdo{P}{Q} τ,g,d- D(∅,

√
)

P a,g,d- W (a 6= [)

auxdo{P}{Q} a,g,d- W ◦ M−1
do

where

Mdo(A, P ′)
def
=




〈A, auxdo{P ′}{Q}〉 if P ′ 6=

√

〈A, auxdo{Q}{Q}〉 if P ′ =
√

The right inference rule corresponds to the loop break and is as expected.
The left inference rule applies to the occurrence of an action of P that differs
from [. It is the obvious generalisation of the two nonprobabilistic rule. It
states that the loop behaves as auxdo{P ′}{Q}, whenever P evolves into P ′

unless P ′ 6=
√

. If P instead successfully terminates, the loop resumes from its
beginning auxdo{Q}{Q}.

Relabelling and hiding. The semantics for relabelling is as usual in traditional
process algebra: relabel {a1, . . ., ak} by {a′

1, . . ., a
′
k} P behaves like P except

that every observable action or exception ai is renamed by the corresponding
a′

i:

P a,g,d- W f = [a1/a
′
1, . . ., ak/a

′
k]

relabel {a1, . . ., ak} by {a′
1, . . ., a

′
k} P

f(a),g,d- W ◦ M−1
rel

where

Mrel(A, P ′)
def
=




〈A, relabel {a1, . . ., ak} by {a′

1, . . ., a
′
k} P ′〉 if P ′ 6=

√

〈A,
√
〉 if P ′ =

√

Alphabet extension. extend just extends the alphabet of a process (cf. Table 2)
and does not affect behaviour:

P a,g,d- W
extend {act1, . . ., actk} P a,g,d- W ◦ M−1

ext

where

Mext(A, P ′)
def
=




〈A, extend {act1, . . ., actk} P ′〉 if P ′ 6=

√

〈A,
√
〉 if P ′ =

√

Exception handling. An exception excp ∈ Excp is raised by the simple be-
haviour throw(excp):

throw(excp) excp,tt,ff- D(∅, abort)
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Behaviour Q ≡ try{P}catchexcp1 {P1} . . . catchexcpk {Pk} behaves like P as
long as P does not raise an exception excpi (0 < i 6 k). If P raises exception
excpi, it behaves as Pi, i.e., Pi is the exception handler of excpi. Unhandled
exceptions are not handled by any Pi and thus propagate outside Q (where
they might be handled):

P a,g,d- W (a /∈ {excp1, . . ., excpk})
try{P} catch excp1 {P1} . . . catch excpk {Pk} a,g,d- W ◦ M−1

try

where

Mtry(A, P ′)
def
=





〈A, try{P ′} catch excp1 {P1} . . . catch excpk {Pk}〉 if P ′ 6=
√

〈A,
√
〉 if P ′ =

√

The inference rule for the case in which an exception is handled is:

P
excpi,g,d- W (0 < i 6 k)

try{P} catch excp1 {P1} . . . catch excpk {Pk} τ,g,d- D(A(Pi), Pi)

Note that although raising the exception excpi results in an unhandled error
(cf. the inference rule for throw), the resulting behaviour of the entire expres-
sion is Pi, the handler of excpi. To realize the call-by-value mechanism, the
assignments for a (possible) process instantiation in Pi are considered.

Probabilistic prefix. Behaviour act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk} per-
forms action act without restriction, randomly selects an alternative i accord-
ing to the weights w1, . . ., wk, performs an assignment according to asgni, and
evolves into Pi.

Weights are arithmetic expressions (not containing sampling expressions) re-
quiring particular treatment. A probability distribution is obtained by dividing
a given weight by the sum of all weights in the palt-construct, i.e., wi

w1+···+wk
is

the probability of performing asgni while evolving into Pi—provided there is
no index j 6= i with the same assignments and evolving behaviour. Therefore,
wi must be non-negative and w1 + · · ·+ wk non-zero. Since weights may con-
tain variables, these conditions are checked at “run time”, i.e., in the concrete
semantics, cf. Section 5.

Let predicates neg ≡ ∧k
i=1 wi < 0 and zero ≡ ∑k

i=1 wi = 0. The inference rule
covering the normal situation is:

act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk} act ,¬(neg∨zero),ff- W

with W being the weight expression:

W(asgn i ∪ A(Pi), Pi)
def
=

∑k
j=1 I(i, j) · wj
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where

I(i, j)
def
= if (asgni ∪ A(Pi) = asgnj ∪ A(Pj) ∧ Pi = Pj) then 1 else 0.

The guard ¬(neg ∨ zero) ensures that the weights are legal.

Note that besides the assignments asgni also the (possible) assignments intro-
duced by process instantiation in Pi are performed.

The two abnormalities that might happen during execution are that one of
the weight expressions evaluates to a negative number, or that the sum of all
weights is zero. The following two axioms deal with these situations:

act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk} neg weight ,neg,ff- D(∅, abort)

act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk} no weight ,zero,ff- D(∅, abort)

The labels neg weight and no weight are predefined exceptions. It is therefore
possible to catch them and handle the abnormal situations, if necessary.

Parallel composition. Behaviour par{::P1 . . . ::Pk} runs P1, . . ., Pk concurrently,
while synchronizing them on the intersected alphabet, thus allowing for multi-
way synchronization. The alphabet of a process P is the set α(P ) ⊆ PAct∪IAct
of all actions P recognizes (cf. Table 2). To define the semantics of Mod-
est parallel composition, we resort to the auxiliary operator ||B, with B ⊆
PAct∪ IAct, that behaves like CSP or LOTOS parallel composition [40,11]. par
is defined by:

par{::P1 . . . ::Pk} def
= (. . .((P1 ||B1

P2) ||B2
P3). . .) ||Bk−1

Pk

with Bj = (
⋃j

i=1 α(Pi)) ∩ α(Pj+1). Note that Bj only contains observable
actions, i.e., ⊥, [, τ , and exception names do not belong to Bj. The behaviour
of ||B is formally defined in the following. Action a /∈ B (which is not intended
to synchronize) can be performed autonomously, i.e., without the cooperation
of the other parallel component:

P1
a,g,d- W (a /∈ B)

P1 ||B P2
a,g,d- W ◦ M−1

parP2

P2
a,g,d- W (a /∈ B)

P1 ||B P2
a,g,d- W ◦ M−1

parP1

with MparP (A, P ′)
def
= 〈A, P ′ ||B P 〉, where

√
||B

√
=

√
. Note that a parallel

composition successfully terminates whenever all its components do so.

Modest provides two synchronization modes which depend on the action
type. An action can be either patient or impatient. A process that wants to
synchronize on a patient action always waits for its partner to be ready. Ac-
cordingly, its urgency constraint needs to be relaxed to the requirements of the
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Table 2
Alphabet of a Modest term

α(stop) = α(abort) = α(break) = α(throw(excp)) = ∅

α(act) = {act} − {τ}

α(act palt {:w1:asgn1; P1 . . . :wk:asgnk; Pk}) = α(act) ∪
⋃k

i=1 α(Pi)

α(when(b) P ) = α(urgent(b) P ) = α(P )

α(alt{::P1 . . . ::Pk}) = α(do{::P1 . . . ::Pk}) = α(par{::P1 . . . ::Pk}) =
⋃k

i=1 α(Pi)

α(P1; P2) = α(P1) ∪ α(P2)

α(try{P} catch excp1 {P1} . . . catch excpk {Pk}) = α(P ) ∪
⋃k

i=1 α(Pi)

α(relabel {a1, . . ., ak} by {a′1, . . ., a′k} P ) = α(P )[a1/a
′
1, . . ., ak/a

′
k] − {τ}

α(extend {act1, . . ., actk} P ) = α(P ) ∪ {act1, . . ., actk}

α(ProcName(e1, . . ., ek)) = α(P ) provided process ProcName(x1, . . ., xk) {P}

partner. As a consequence, an urgency constraint in a patient synchronization
is met whenever all the components meet their respective urgency constraints
(i.e., the synchronization meets the conjunction of the urgency constraints):

P1
a,g1,d1- W1 P2

a,g2,d2- W2 (a ∈ B ∩ PAct)

P1 ||B P2
a,g1∧g2,d1∧d2- (W1 ×W2) ◦ M−1

par

However, a process that intends to synchronize on an impatient action is not
willing to wait for the partner. Therefore, an urgency constraint in an im-
patient synchronization should be met as soon as one of the synchronizing
components meets its urgency constraints, i.e., the synchronization meets the
disjunction of the urgency constraints:

P1
a,g1,d1- W1 P2

a,g2,d2- W2 (a ∈ B ∩ IAct)

P1 ||B P2
a,g1∧g2,d1∨d2- (W1 ×W2) ◦ M−1

par

The difference between synchronization of patient and impatience actions is
only given by the way the urgency constraints are related, while the guard
of the resulting transition is the conjunction of the guards of its constituents.

In both cases, (W1 × W2)(α1, α2)
def
= W1(α1) · W2(α2), for all α1 and α2—
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corresponding to the product of two probability spaces—and

Mpar(〈A1, P
′
1〉, 〈A2, P

′
2〉)

def
=





if A1 ∪ A2 is not a function then

〈∅, throw(inconsistent)〉

else 〈A1 ∪ A2, P
′
1 ||B P ′

2〉

where, as before,
√

||B
√

=
√

. Function Mpar determines the continuation
after the synchronization. Note that during synchronization an inconsistency
of assignments may arise due to different write accesses to the same variable,
i.e., if A1(x) 6= A2(x) for some variable x. We treat this situation by raising
the predefined exception inconsistent and not performing any assignment.

5 Concrete Semantics

The semantics of a timed automaton can be given as an infinite-state labeled
transition system in which transitions are either labeled with actions or with
delays (i.e., real numbers). In a similar way, the semantics of a stochastic
timed automaton is defined using timed probabilistic transition systems. These
transition systems are infinite-state and are a slight generalization of timed
transition systems as the target of a transition is not simply a state but a
probability distribution over states. This semantics is defined in this section.

Timed probabilistic systems. We start by recapitulating some standard mea-
sure theory [55]. A probability space is a tuple (Ω,F ,P) where Ω is the sample
space, F is a σ-algebra containing subsets of Ω, and P is a probability measure
on the measurable space (Ω,F). We only consider Borel measurable spaces
and denote by B(Ω) the Borel σ-algebra on sample space Ω. Let Prob(Ω)
denote the probability measure on the Borel measurable space (Ω,B(Ω)).

Definition 2.
A probabilistic transition system (PTS, for short) is a triple (Σ,L,−→ ) where
Σ is a set of states, L is a set of labels, and −→⊆ Σ × L× Prob(Σ) is the
(probabilistic) transition relation. �

We write σ
`−→ P whenever 〈σ, `,P〉 ∈−→ . A probabilistic transition σ

`−→ P
is said to be trivial if its probability measure P is deterministic, i.e., a measure

such that P({σ′}) = 1 for a given σ′ ∈ Σ. In this case we write σ
`−→ σ′.

In a timed PTS, transitions are either labeled by an action (as before) or with
a real number indicating the amount of elapsed time. The latter transitions,
also called timed transitions, have a single target state with probability 1.

22



Definition 3.
A timed probabilistic transition system is a PTS (Σ,L,−→ ) such that:

• L is the disjoint union of a set Act of actions and the set IR>0 of delays
• every transition labeled with t ∈ IR>0 is trivial and satisfies [60]:

· time additivity: σ
t+t′−−−→ σ′ ⇐⇒ σ

t−→ σ′′ t′−→ σ′ for some σ′′, and

· time determinism: σ
t−→ σ′ and σ

t−→ σ′′ imply σ′ = σ′′.

�

When defining the interpretation of stochastic timed automata, states in a
timed PTS consists of a location indicating the state of control, and a valuation
indicating the current values of all variables. Valuations are defined as follows.

Valuations. A valuation is a function that, to each variable in Var, assigns a
value of its type. Let Val be the set of all valuations ranged over by v, v′, v1

and so forth. Let F [v]
def
= λξ. v(F (ξ)) denote the instantiation of the sampling

expression F with valuation v. F [v] is a distribution function on variable ξ.
Valuations are extended to expressions in the usual way: v(e), for expression
e ∈ Exp, is obtained by replacing each variable x in e by v(x) and by replacing
each sample expression sample(F ) by a unique random variable (name) 5 X
with distribution F [v]. Uniqueness means that each occurrence of sample(F )
in expression e is replaced by a distinct random variable, and, hence, sampled
with possibly different values.

Example 3.
Let e ≡ (x ∗ sample(exp(z)))+ (sample(exp(z)) ∗ sample(exp(y))), where exp
abbreviates exponential. Then v(e) = (v(x) ∗ X) + (Y ∗ Z), where X, Y
and Z are different random variable (names) with distributions exp(v(z)),
exp(v(z)), and exp(v(y)), respectively. An example of sampling is to assign
3 to X, 5.5555. . . to Y , and

√
2 to Z. �

Valuation v is extended to assignment A by v◦A where it is required that ran-
dom variables are unique among the assigned expressions. That is, if random
variable X occurs in (v ◦A)(x) and x 6= y then it must not occur in (v ◦A)(y).
Let RVar(v ◦ A) be the set of random variables appearing in v ◦ A. Formally:

RVar(v ◦ A) = {X | x ∈ Var and X occurs in (v ◦ A)(x) }.

Note that RVar(v ◦ A) is finite. Let RVar(v ◦ A) = {X1, . . ., Xn } and let Fi

be the probability distribution of random variable Xi (for 0 < i 6 n). Let

5 A random variable is a function. The term “random variable name” is used to
distinguish between the symbol and the function. In the remainder we will not dwell
upon this distinction anymore.
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B(IRn) be the Borel algebra on the n-dimensional real space, and Pv
A be the

unique probability measure on B(IRn) induced by F1, . . ., Fn in the respective
positions. As there is a trivial bijection between functions RVar(v ◦ A) → IR
and IRn, we identify u with the element (u(X1), . . ., u(Xn)) ∈ IRn.

Interpretation of a stochastic timed automaton. A state in the behaviour of a
STA is completely identified by the location in which the system is located

and the value of all its variables. Let ΣLoc
def
= Loc × Val be the set of states

and B(ΣLoc) be the Borel algebra with sample space ΣLoc.

Weight expression W is a proper weight expression in valuation v if ¬( (∃α :
v(W(α)) < 0) ∨ ((

∑
α v(W(α))) = 0) ) holds, i.e., W(α) does not take a

negative value in v for any α in the domain of W, and
∑

α W(α) does not
evaluate to 0 in v. If W is proper in v, πv

W denotes the discrete distribution

function derived from the weight expression evaluated in v, i.e., πv
W(α)

def
=

v(W(α))∑
α

v(W(α))
for all α. If it is not proper, πv

W is not a (discrete) distribution and,

hence, Pv
W is not a probability measure.

Definition 4.
The semantics of stochastic timed automaton (Loc, Act, -) is the timed

PTS (ΣLoc, Act ∪ IR>0,−→ ) where −→ is the smallest relation satisfying the
following inference rules:

(1)
s a,g,d- W v(g) holds W is proper in v

〈s, v〉 a−→ Pv
W

where
Pv

W(B)
def
=

∑

s∈Loc,A∈Asgn

πv
W(〈A, s〉) · (Pv

A ◦ (F v
〈A,s〉)

−1)(B)

and F v
〈A,s〉 : (RVar(v◦A) → IR) → ΣLoc is defined by F v

〈A,s〉(u)
def
= 〈s, (u ◦ v ◦ A)〉. 6

For the timed transitions we have:

(2)
∀ t′ < t : (v + t′)(tps) holds

〈s, v〉 t−→ 〈s, v + t〉
6 Note that F v

〈A,s〉 must be a measurable function. This strictly depends on A.
Recall that A : Var → Exp, then A(x) is an expression that contains parameterized
sample expressions and hence v(A(x)), when defined, defines a probability measure
on the product space obtained from all random variables appearing in v(A(x)). In
other words, λx.v(A(x)) should be a random variable on the domain of x. Precisely,
F v
〈A,s〉 is a measurable function whenever, for all x ∈ Var, v(A(x)) is defined. For

example, if A(x) = sample(exp(1/y)), then F v
〈A,s〉 will not be defined if v(y) = 0.
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where tps
def
= ¬∨{d | s a,g,d- W} is the time progress condition, and (v+t)(x)

def
=

v(x)+t if x ∈ Ck and v(x) otherwise. �

Like for the semantics of timed automata, there are two inference rules that
determine the transition relations: one that corresponds to taking an edge in
the stochastic timed automaton, and one that controls the advance of time.

Inference rule (1) defines the execution of a control transition s a,g,d- W. It
requires that the guard g holds in valuation v (enabledness) and W is proper.
As W is proper, Pv

W defines a well-defined random selection of a location and
the new valuation. This can be seen as a three-step process: (i) sample the
target location s′ together with the assignments A according to distribution
πv
W , (ii) sample function u from random variables in RVar(v ◦A)—this is done

by Pv
A—and (iii) determine the new state 〈s′, (u ◦ v ◦ A)〉—which is done by

function F v
〈A,s′〉. u ◦ v ◦ A is the new variable valuation.

Note that the semantics of the palt-construct guarantees that for every Mod-

est term P and every valuation v, if P a,g,d- W and v(g) holds, W is indeed
proper in v.

Inference rule (2) controls the passage of time. It states that idling for t time
units in state 〈s, v〉 is allowed as long as no urgency constraint is violated
within this period. When t time units have elapsed in valuation v, the value
of every clock x ∈ Ck is increased by t units, while the value of other variables
remains unchanged.

Applying the inference rules of Section 4 to a Modest specification yields
a stochastic timed automaton. Subsequently, Definition 4 yields the timed
probabilistic transition system that corresponds to the Modest specification.

Bisimulation. When studying the behaviour of systems it is important to be
able to check whether two systems behave in the same manner. For instance,
this is useful to determine whether the model of a system implementation con-
forms to its specification. This is typically done with equivalence relations such
as bisimulation [52]. Another reason is that whenever two systems show equiv-
alent behaviour, one could be replaced by the other as part of a larger system.
This requires the equivalence relation to be a congruence for the operators of
the modeling language at hand.

For discrete-time probabilistic systems, Larsen-Skou’s probabilistic bisimula-
tion [47] is a well-accepted and investigated equivalence. This notion can be
lifted to the continuous-time setting, as shown in, for instance, [14,22,26,28,16].
Unfortunately, this form of bisimulation is not a congruence for parallel com-
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b, tt, tta, tt, tt b, tt, ttb, tt,ffa, tt, tt b, tt,ff

(a) (b) (c) (d)

Q ||a stopP ||a stopQP

Fig. 2. Bisimulation is not a congruence in general

position 7 . Consider, for instance, the processes

P ≡ alt{ ::when(tt) urgent(tt) a

::when(tt) urgent(tt) b }, and

Q≡ alt{ ::when(tt) urgent(tt) a

::when(tt) urgent(ff) b }

whose automata are depicted in Figure 2(a) and (b), respectively. For conve-
nience, the (slight) difference between the processes P and Q is underlined.
As both P and Q have an outgoing edge with a valid urgency condition, both
processes can only perform either the action a or b immediately. Hence, they
are (probabilistic) bisimilar. Their composition with the context . . . ||{a} stop,
however, yields non-bisimilar automata. This is depicted in Figure 2(c) and
(d), respectively. Whereas the process Q ||{a} stop is allowed to idle arbitrarily
before performing action b, P ||{a} stop is obliged to perform b immediately.

It is worthwhile to stipulate that there are interesting subsets of Modest for
which bisimulation is indeed a congruence. A simple syntactic criterion, for
instance, is to forbid the use of the urgent-construct and instead only allow
the invariant-construct that will be introduced in Section 6. In this case, safety
timed automata [35] are obtained. Alternatively, the concrete semantics can
be adapted slightly such that it is possible to distinguish processes that are
not subject to any interaction with their context anymore (so-called closed
systems), and processes that do (i.e., open systems). This approach is worked
out for a subset of stochastic timed automata in [22,26] and can be generalized
in a rather straightforward way to the setting of this paper.

7 This has already been observed for the case of timed automata with deadlines [12]
and stochastic automata [22,26] which are submodels of STA.
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6 Invariants and Some Shorthands

This section introduces some shorthand notations for modeling convenience,
and elaborates on specifying location invariants — as opposed to urgency
constraints — in Modest.

Some shorthand notations. The following shorthands are considered. Both the
alt- and do-construct allow an else alternative as in Promela [39]. else is a
shorthand defined as follows:

alt{::when(b1) P1 . . . ::when(bk) Pk ::else Q}
def
= alt{::when(b1) P1 . . . ::when(bk) Pk ::when(¬∨k

i=1 bi) Q}.

In a probabilistic alternative, either assignments or processes (but not both)
can be omitted, e.g.,

act palt {:1: { y = 3 } :2: PN(4) }

should be interpreted as

act palt {:1: { y = 3 }
√

:2: { } PN(4) }

Note however that, strictly speaking, the last process is not a legal Modest
expression since

√
is not a language construct (but only a semantic one).

Other useful standard programming constructs, such as while-loops can be
defined as usual:

while(b){P} def
= do{::when(b) P ::else break}.

As it is well known, hiding is a particular form of relabeling in which actions
are renamed by the silent action τ :

hide{act1, . . ., actk} P
def
= relabel {act1, . . ., actk} by {τ, . . ., τ︸ ︷︷ ︸

k times

} P

Location invariants. Although we use urgency constraints for imposing ur-
gency, location invariants like in safety timed automata [35] are more com-
mon. Location invariant b on process (i.e., location) P specifies that P can
perform an initial activity as long as b holds. Once b becomes false, however,
P is stuck and cannot perform any initial activity anymore (and forbids time
to advance). This construct can be defined in Modest as follows:
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invariant(b) P
def
= alt{ :: when(b) P

:: urgent(¬b) when(ff) throw(invariant)

}

where invariant is an exception that is not used in the rest of the Modest
specification.

invariant(b) P behaves like P but due to the alternative with urgency con-
straint ¬b, it disallows the progress of time beyond the validity of b. Note
that the alternative in which the exception invariant is raised is never ex-
ecuted as the guard does not hold. Note also that it is indeed necessary to
use an alt construct in order to define invariants. In fact, the naive solution

invariant′(b) P
def
= urgent(¬b) P does not work in parallel compositions, as can

be seen in the following example. Consider processes P = invariant′(x 6 2) a; b
and Q = invariant′(x 6 5) c; a, where a, b, c are actions. The expected invariant
of process R = par{:: P :: Q } is then x 6 2∧x 6 5 (therefore R can only idle
while x 6 2). However, this is not the case. According to Modest operational

semantics, the only transition from R is R
c,tt,¬(x65)−−−−−−−→ since a is a common

action and hence both P and Q must synchronise on it. As a consequence, R
would be allowed to idle while x 6 5 i.e. beyond the intended invariant x 6 2.

A second issue is the guarding of P with the invariant condition b by the
alternative :: when(b) P in the above invariant encoding. The reason for this
is that urgency constraints only have effect on edges and not on locations as
it is the case for invariants in timed automata. If on entering a location an ur-
gency constraint is false, it only limits the execution of its respective transition
(apart from time progress), but not the execution of any other transition whose
guard is valid. On the contrary, false invariants in timed automata indicate
impossible situations and hence no execution is further allowed. To illustrate
the necessity of the guarding, consider the timed automaton in Figure 3.(a)
where the boolean formulas below locations indicate invariants. The Modest
process T() defined in Figure 3.(b) represents this timed automaton, and its
semantics is given by the STA in Figure 3.(c). Notice that action b in the
second edge cannot be executed (in any of the two automata). However, if the
edge from s2 to s3 in the STA were not guarded with the invariant (x 6 1),
the b-transition could be executed as soon as location s2 is reached (see rule
(1) in Definition 4).

The definition of invariant() provides the expected compositional behaviour.
Let predicate

inv(P )
def
=

∧
{¬d | P invariant ,g,d- }.

Here, we assume
∧

∅ = tt. Intuitively speaking, predicate inv(P ) is the time
invariant of process P . It follows:
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(a)
s1 s2 s3

x 6 3 x 6 1 tt

a, x > 2 b, tt

(b)
process T () {

clock x;

invariant(x 6 3) when(x > 2) a;

invariant(x 6 1) b

}

(c)
s3

a, 2 6 x 6 3, tt
s2

invariant
ff

invariant

¬(x 6 1)
ff

⊥, tt,ff

abort

b, x 6 1, tt

¬(x 6 3)

s1

Fig. 3. A timed automaton, its Modest description and corresponding STA

Proposition 1 inv(P ) can be recursively defined as in Table 3.

Proof. We only show the case for P of the form par{::P1 . . . ::Pk}. The other

cases follow in a similar manner. Let inv(Pi) =
∧{¬di | Pi

invariant ,gi,di-}
for 0 < i 6 k. Since exceptions—in particular invariant—are not subject to
synchronization it directly follows from the inference rules of parallel compo-
sition:

inv(P ) =
∧ (

{¬d1 | P1
invariant ,g1,d1-} ∪ . . . ∪ {¬dk | Pk

invariant ,gk,dk-}
)
.

By simple logic calculation, we obtain inv(P ) =
∧k

i=1 inv(Pi). �

Time advances in P as long as no urgency constraint becomes true, i.e., as long

as predicate tpP = ¬∨{ d | P a,g,d- } holds (cf. Definition 4). Clearly, tpP =
∧{¬d | P a,g,d- }, and hence, inv(P ) is the part of tpP that controls the time
progress by only invariant-labeled transitions. If in a Modest specification
only the invariant-construct is used, it follows that tpP = inv(P ). In this case,
stochastic timed automata correspond to safety timed automata.

7 Design Rationales

After having introduced the language and its semantics, we are now in a
position to provide a deeper discussion of the design decisions that led us to
set up Modest and the model of STA in precisely the way we decided to.
This section is intended to allow readers to distinguish optional and mandatory
choices in the language setup.

Probabilistic branching. The attentive reader has realized that in Modest each
occurrence of a palt construct must be guarded by an action. In particular,
it is not possible to choose probabilistically among actions prior to changing
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Table 3
The invariant function

inv(P ) = tt if P has one of the following forms:

stop, abort, break, act , act palt {. . .}, throw(excp),

inv(P ) = ¬b ∧ inv(Q) if P is of the form: urgent(b) Q

inv(P ) = inv(Q) if P has one of the following forms:

when(b) Q, Q; Q′, relabel {I} by {G} Q, extend {H} Q,

try{Q} catch excp1 {P1} . . . catch excpk {Pk},

ProcName(. . .) provided process ProcName(. . .){Q}

inv(P ) =
∧k

i=1 inv(Pi) if P has one of the following forms:

alt{::P1 . . . ::Pk}, do{::P1 . . . ::Pk}, par{::P1 . . . ::Pk}

state. This restriction avoids the typical problems of parallel composition of
probabilistic processes (see for a discussion [24,58]), and allows for defining a
sound and elegant composition of STA. It, therefore, is one of the pillars of our
compositional semantics. The restriction originates from the work of Lynch
and Segala [54], but is extended here by allowing for weighted expressions
instead of probabilities.

Clocks and distribution sampling. As in timed automata [3,12], clocks play a
prominent role in Modest. For modeling soft real-time systems in particular,
the distinction between the setting of clocks (i.e., sampling from a general
probability distribution) and the completion of a random delay is essential
to obtain so-called expansion laws as in process calculi [52]. This allows (in
its simplest form) for the reduction of independent parallelism in terms of
alternative and sequential composition, and is of crucial importance for process
algebraic verification purposes. This concept originates from [22,26] and is
also adopted (in a slightly different form) in stochastic process algebras that
support general distributions such as [15].

Patience and impatience. Modest distinguishes patient and impatient ac-
tions. This feature has been introduced in order to provide a language that
encompasses compositional modelling means for hard as well as soft real-time
systems. Impatient actions can only synchronise as long as none of their ur-
gency constraints turn true. That is to say, once a urgency constraint of one of
the participants becomes true, the synchronisation should happen. A real-life
application scenario would be that a meeting of some managers must finish
(via a synchronisation) by the time the first participant needs to leave. Patient
actions instead may synchronise as long as at least one of the urgency con-
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straints is still false. A typical example of such synchronisation in the manager
context is that the meeting can only start (via a synchronisation), once all par-
ticipants are present. It is important to realize that patience and impatience
cannot be encoded into each other. An alternative to express impatience in a
patient setting is to use the concept of urgent channels as they are provided,
for instance, by the timed-automata model checker Uppaal [5].

Invariants and urgency constraints. STA are based on timed automata with
deadlines [12]. This is reflected syntactically by the urgent construct. However,
if one restricts to only using the invariant construct (as introduced in Section 6),
the more standard model of timed automata is retained with all its compo-
sitional properties [23,50,59]. The latter model is tailored towards hard-real
time systems. (In this model patience and impatience coincide). Timed au-
tomata with deadlines 8 , on the other hand, have originally been introduced
for modeling soft-real time systems. However, in this model, compositionality
is shallow, because—as discussed in Section 5—bisimulation is a congruence
only for limited usages with synchronisation on patient actions.

Data model and assignments. The Modest language and semantics has stayed
rather abstract with respect to the way assignment functions are specified.
This is a deliberate decision, because we do not intend to prescribe unnecessary
details. One may opt for functional declarations, as in standard ML [34] or E-
LOTOS [41] or for imperative programs, as in LOTOS-NT [57]. The notation
used in our examples (and in the current version of the tool) is defining the
assignment function A by a sequence of assignments of the form

{ x = tt, y = 0, z = Exponential(1/delay time) }

We foresee that plain C-code fragments may also be used in this context, which
would enable to include more complex data manipulations in a single atomic
block. As an artificial example, it allows us to write, for instance

{=

x = true ;

for (int i=1, i<3, i++) {

x = !x;

}

=}

In this context, the assignment expression A(x) is to be understood as the
fixpoint of the function (in lambda-notation) corresponding to this fragment
(which is λx. tt in this example). Such a code fragment may also give rise to
a multi-dimensional assignment.

8 As the term deadline is somewhat misleading, we use the term urgency constraint
instead [56].
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There is however the following generic condition that must be met by any
assignment function A. For each variable x, the assignment A(x) must be a
random variable on the domain of x, whenever the expression A(x) is instanti-
ated with concrete parameters. If no sampling is used in A(x), this requirement
boils down to the obvious requirement that A(x) ∈ domx, and in particular
the code computing A(x) must be terminating. In the presence of sampling,
this requirement asserts termination with probability 1, as in, for example:

{=

x = true ;

while (x==true) {

x = BERNOULLI(0.5)

}

=}

(where Bernoulli(0.5) corresponds to an unbiased probabilistic choice be-
tween {tt,ff}). Here, the code may not terminate, but this occurs with prob-
ability 0. The assignment function described by this code is λx. X, where X
is a random variable on {tt,ff} taking value ff with probability 1 and tt
with probability 0. Ensuring termination of such code fragment is left to the
user, and surely it is advised to abstain from specifying code fragments like
the ones above. Other approaches, such as Promela [39] or Probmela [4],
are even more relaxed, and allow termination with probability less than 1.
(Since Promela does not model probabilistic steps, this means that atomic
statements may or may not terminate.)

Synchronisation discipline and value passing. Synchronisation between Mod-
est processes is realized by shared actions, i.e., actions contained in the alpha-
bet of multiple processes. This kind of multi-way synchronisation originates
from CSP, and enjoys a revival in the FSP [44] (Finite State Processes) lan-
guage. Alternative synchronisation mechanisms, like binary synchronisation
(as in CCS and the π-calculus) could also have been adopted for Modest,
if desired. For future extensions of Modest, a graphical composition oper-
ator in the style of [31] could be an interesting generalisation of the current
multi-way synchronisation paradigm. Value passing in Modest takes place
by means of shared variables. This mechanism is also adopted, for instance, in
the timed-automata model checker Uppaal [5]. For the sake of simplicity, the
scheme of LOTOS with notions such as value generation and value matching
has not been adopted.

Exception handling and scoping. Modest exception handling is inspired by
the exception handling mechanism of Ada [49]. Exceptions in Modest are
declared globally, and if thrown they may (or may not) be caught by a catching
exception handler at the same or at a higher level. If unhandled, the exception
is visible to parallel components just like ordinary actions. An unhandled
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exception terminates (in an error state) the process that raised it. Concurrent
processes proceed unaffected. A “local” unhandled exception thus does not
yield a global system halt. Synchronisation on exceptions is not possible in
Modest.

Modest actions are also declared globally, so local actions are not directly
supported (while local variables are), but can implicitly be achieved via the
hide-construct. Together with action synchronisation, local action scopes would
enable an abstract modelling of information hiding and security issues, as in
the π- and Sπ-calculus [53,1]. The restriction to global action scopes is a design
choice that has been made for simplicity, and might be relaxed.

Priorities. For the sake of simplicity, Modest does currently not include
means to express priorities. The approach recently proposed in [14] shows a
possible way of incorporating priorities.

8 Concluding Remarks

This paper has introduced the modeling formalism Modest, a language to
model real-time and stochastic concurrent systems. The formal semantics has
been provided in two layers: an operational semantics maps Modest terms
onto a finite-state model whose interpretation is given in terms of infinite
transition systems—in the same vein as for timed automata [3].

Modest is quite expressive covering a wide range of timed, probabilistic,
nondeterministic, and stochastic models. Table 4 lists a selection of prominent
models and makes precise which semantic concepts (cf. Section 1) each of them
shares with STA. Apart from action nondeterminism, each listed semantic
concept can be detected syntactically, while parsing a Modest specification.
Table 4 thus provides sufficient criteria for identifying submodels syntactically
on the level of Modest.

Action nondeterminism is a principal feature of compositional formalisms, yet
it implies that DTMCs, CTMCs and GSMPs are not closed under composition
in general. Action nondeterminism can in principle be excluded syntactically
by disallowing alt and par, but the resulting language is too poor to be of much
use. More liberal syntactic conditions for the absence of action nondetermin-
ism can be adopted from [51]. Semantic conditions can be incorporated while
constructing the automaton underlying a Modest specification, by resort-
ing to algorithms proposed in [18,21,37]. Alternatively, one can resolve action
nondeterminism using ad-hoc schedulers as in [22,27,10].

This paper has focused on the theoretical underpinnings of Modest. The lan-
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Table 4
Submodels of stochastic timed automata. LTS stands for labeled transition sys-
tems [43], PTS for probabilistic transition systems [54], TA for timed automata [3],
PTA for probabilistic timed automata [46], DTMC for discrete- and CTMC for
continuous-time Markov chains [45], CTMDP for continuous-time Markov deci-
sion processes [30], GSMP for generalized semi-Markov processes [33], and SA for
stochastic automata [22,26]. CTMCs and CTMDPs are obtained if only negative
exponential random variables are used, and clocks only occur in a restricted form
(indicated by r; guards are right-continuous and clocks can be uniquely mapped on
the random variables they use).

LT
S

P
T

S

T
A

P
T
A

D
T

M
C

C
T

M
C

C
T

M
D

P

G
SM
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SA ST
A

probabilistic branching - + - + + + + + + +

clocks - - + + - r r + + +

random variables - - - - - exp exp + + +

delay nondeterminism - - + + - - - - - +

action nondeterminism + + + + - - + - + +

guage is supported by the Modest tool environment prototype Motor [9] 9

which has been linked to the stochastic analysis framework Möbius [20] 10 .
This tool chain has recently been applied successfully to some industrial case
studies originating from varying different industrial domains (plug-and-play
networks [8], lacquer production plants [10], and a European standard for wire-
less train signaling [42]). These case studies have shown the effectiveness and
adequacy of Modest. More importantly, though, these studies have confirmed
that the formal underpinning of Modest—as laid down in this paper—is the
basis of a trustworthy analysis. As convincingly illustrated in [17], the absence
of such a rigorous basis easily leads to contradictory results for even simple
models.
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10 The Möbius software was developed by W.H. Sanders and the Performability
Engineering Research Group (PERFORM) at the University of Illinois at Urbana-
Champaign. See http://www.mobius.uiuc.edu/.

34
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