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Discrete Event Simulation Introduction

SIMULATION

Instead of numerically analysing a system.
Perform single runs of the system.

Define a stopping criterion Ψ,
continue simulating the system until Ψ is fulfilled.

Collect information from single runs and make a conclusion.
No exhaustive simulation,

result has some uncertainty.
Time-advance mechanism is used.

Clock times are sampled,
simulation clock advances in a discrete step.
Simulation time 6= real time.
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Discrete Event Simulation Introduction

CLASSIFICATION

time
based

event
based

oriented
event process

oriented

event
continuous discrete

event

Simulation

Discrete-event simulation: systems are discrete state systems.
Time is continuous.
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Discrete Event Simulation Introduction

TIME-BASED SIMULATION

Define fixed step size ∆t .
Check whether events happen in [t , t + ∆t ].
If so, execute events.
Advantage.

Easy to implement.
Disadvantages.

Events are assumed to have no order,
events are assumed to be independent.
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Discrete Event Simulation Introduction

EVENT-BASED SIMULATION

Time steps have variable length.
Occurrence of events controls length of time step.
Exactly one event per time step.
Actual event causes future events to occur.

Gathered in an ordered event list.

Events have to be inserted in order.
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Discrete Event Simulation Introduction

EXAMPLE – G|G|1 SIMULATION

timea2 a3a1 d1 d2

A1 A2 A3

D1 D2 D3

e0 e1 e2 e3 e4 e5
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Discrete Event Simulation Introduction

IMPLEMENTATION STRATEGIES

Event oriented.
Procedure Pi for every event-type i.
Pi invoked if occurring event is of type i.

Process oriented.
Associate process with each event-type.
Processes interchange information via communication.
Scheduling of events is done implicitly.
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Discrete Event Simulation Random numbers

. . . AND PSEUDO RANDOM NUMBERS

Generate random number from given probability
distribution.
Has to conform to the given distribution, otherwise

obtained simulation results are suspicious.

True random numbers can not be generated with
deterministic algorithms.
Pseudo-random numbers are used.

Generate pseudo-random series on finite subset of N.
Compute pseudo-uniformly distributed numbers on [0, 1].
Verify if generated numbers can be regarded as true random
numbers.
Compute non-uniform distributed pseudo-random numbers.
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Statistics

SET-UP

n single runs or samples of the system have been performed.
n is called the sample size.
Measures of interest are recorded for each sample, e. g.,

(expected) waiting time in a queue,
(expected) number of jobs in a queue.
Remark: for both examples one has to simulate more than
one customer!

Statistics is used to estimate measure of interest for the
complete system, i. e., for all possible system runs.
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Statistics Value estimation

OBTAINING A CONCRETE VALUE

E. g., estimation of mean value.
Assert that mean value lies in a particular interval with given
certainty.
Interval is called confidence interval.
Certainty is called confidence level.
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Statistics Value estimation

ESTIMATING THE MEAN

Estimate unknown mean value µ of random variable X .
X is supposed to have unknown variance σ2.
Our simulation generate n samples xi , i = 1, 2, . . . , n.
Each xi is a realisation of random variable Xi .
Xi , i = 1, 2, . . . , n are independent and identically distributed
with

E[Xi ] = µ,
σ2

Xi
= σ2.
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Statistics Value estimation

ESTIMATOR

Estimator X̄(n) should be
unbiased, i. e., E[X̄(n)] = µ.
Intuition.

1 Perform very large number of experiments,
2 each resulting in an estimator X̄i(n),
3 average of X̄i(n) will be µ.

Point estimator for the sample mean is X̄(n) =
Pn

i=1 Xi
n .

Point estimator for the sample variance is
S2(n) =

Pn
i=1[Xi−X̄(n)]2

n−1 .
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Statistics Value estimation

ESTIMATING THE MEAN

Problem with X̄(n) is
how close is it to µ?
On one experiment it may be close,
on another it may differ by a large amount.

X̄(n) is a random variable with variance
Var[X̄(n)] = σ2

n .
An unbiased estimator of the variance is

V̂ar[X̄(n)] = S2(n)
n .
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Statistics Value estimation

CONFIDENCE INTERVAL - 1

Construct the random variable Zn = X̄(n)−µ√
σ2/n

.

Define Fn(z) = Pr(Zn ≤ z), i. e., Fn(z) is the probability
distribution function of Zn.

THEOREM (CENTRAL LIMIT THEOREM)
Fn(z) → Φ(z) as n →∞, with

Φ(z) =
1√
2π

∫ z

−∞
e−y2/2dy

fX (x) = 1√
2πσ2

e
−(x−µ)2

2σ2 ,

density function of normal distribution with mean µ and
variance σ2.
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Statistics Value estimation

CONFIDENCE INTERVAL - 2

Intuition behind Central Limit Theorem.
Random variable Zn(z) is for large n distributed as a standard
normal random variable
independent of the distribution of the Xi .

Thus, X̄(n) is distributed as a normal random variable with
mean µ and variance σ2

n .

Generally, σ2 is unknown.
Replace σ2 by S2(n) for sufficiently large n.

tn = X̄(n)−µ√
S2(n)/n

is approximately distributed as a standard

normal random variable.

Sven Johr (Universität des Saarlandes) V. Simulation Datennetze II/Verifikation II 16 / 29



Statistics Value estimation

CONFIDENCE INTERVAL - 3

For large n it follows

Pr

(
−z1−α/2 ≤

X̄(n)− µ√
S2(n)/n

≤ z1−α/2

)

= Pr

(
X̄(n)− z1−α/2

√
S2(n)

n
≤ µ ≤ X̄(n) + z1−α/2

√
S2(n)

n

)
≈ 1− α

Where z1−α/2 denotes the 1− α/2 single sided critical value
of the standard normal distribution.
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Statistics Value estimation

CONFIDENCE INTERVAL - 4

For sufficiently large n a confidence interval with confidence
level 1− α is given by

X̄(n)± z1−α/2

√
S2(n)

n

Intuition.
1 Let β = 1− α be the desired confidence level,
2 construct a large number of independent confidence

intervals with confidence level β,
each based on n observations, with sufficiently large n,

3 the proportion of intervals containing µ is β.
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Statistics Value estimation

CONFIDENCE INTERVAL - 5

What does it mean?
. . . n sufficiently large. . .

Too small n will cause a confidence level less than 1− α.
tn is called a Student’s t distribution with degree of freedom
n− 1.

For n →∞, tn approaches the normal distribution.

For a Student’s distribution with n− 1 degrees of freedom
tn−1,1−α/2 is the 1− α/2 one sided critical value.
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Statistics Value estimation

EXAMPLE

(x1, x2, . . . , x5) = (0.108, 0.112, 0.111, 0.115, 0.098).

Sample mean X̄(5) =
P5

i=1 xi
5 = 0.1088.

Sample variance S2(5) =
P5

i=1(xi−X̄(5))2

5−1 = 0.0000427.
Confidence level is supposed to be 1− α = 0.9.
Suppose 5 is sufficiently large.

Look up z0.95 = 1.645 for one-sided critical value.
Pr (0.1040 ≤ µ ≤ 0.1136) = 0.9.
But you know, 5 will not be sufficiently large.

Take Student’s distribution.
Look up t4,0.95 = 2.132.
Pr (0.1026 ≤ µ ≤ 0.1150) = 0.9.

Sven Johr (Universität des Saarlandes) V. Simulation Datennetze II/Verifikation II 20 / 29



Statistics Hypothesis testing

ANSWERING A YES/NO QUESTION

No concrete estimation of a value possible.
Reject or accept educated guess, but

there is no estimation of the real value.

The question is different from value estimation.
We want to know if we can accept/reject a particular
assertion, usually called null-hypothesis.
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Statistics Hypothesis testing

HYPOTHESIS TESTING

Formulate two mutually exclusive and exhaustive
hypotheses,

null-hypothesis H0, here f0(x),
alternative hypothesis H1, here f1(x).

Run a simulation and depending on the results
accept H0,
accept H1.

Since we are only taking samples, errors are involved
type I-error, significance, α error,
type II-error, β.

α is called the wrong negative,
the probability to reject H0 although it is true.

β is called the wrong positive,
the probability to accept H0 although H1 is true.

Sven Johr (Universität des Saarlandes) V. Simulation Datennetze II/Verifikation II 22 / 29



Statistics Hypothesis testing

SEQUENTIAL SAMPLING

Instead of having a fixed sample size
evaluate probabilities after each sample.

During simulation it could be that
there is enough evidence to

accept H0,
reject H0,

there is no evidence to accept/reject H0.

A fixed sample size ignores this.
With sequential sampling: decide after each sample if it is
either

true, or
false, or
another sample is required.
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Statistics Hypothesis testing

DEVELOPING A TEST

Sample space Mm, m = 1, 2, . . . ,∞,
M support of probability distribution,
a ∈ Mm is called sample point of size m.

Divide Mm in
R0

m,
R1

m,
Rm.

Termination: sample point of size n falls in
R0

n, accept H0,
R1

n, accept H1.
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Statistics Hypothesis testing

COMPUTING PROBABILITIES

k samples have been taken.
gi,k : probability that Hi is true after k observations.
pi,k : probability density in k−dimensional sample space,
assuming Hi is valid.

gi,k :=
pi,k (x1,x2,...,xk )P
i pi,k (x1,x2,...,xk ) .

Accept either of the hypothesis if gi,k is above di .
If

p1,k (x1,x2,...,xk )
p0,k (x1,x2,...,xk )

≥ A, accept H1,
p1,k (x1,x2,...,xk )
p0,k (x1,x2,...,xk )

≤ B, accept H0.

It can be shown
A ≈ 1−β

α ,
B ≈ β

1−α .
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Statistics Hypothesis testing

PRECISELY

A := 1−β
α .

B := β
1−α .

λn :=
p1,k (x1,x2,...,xk )

p0,k (x1,x2,...,xk ) .

Continue sampling when
B < λn < A.

Accept H0 when
λn ≤ B.

Reject H0 when
λn ≥ A.
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Statistics Hypothesis testing

AIRBAG DEPLOYMENT EXAMPLE - 1

FoVW car company’s airbag deployment rate.
Required rate 98%.
Recent customer reports indicate rate 80%.
Define H0.

f0(x) =

{
0.80 , x = 1,

0.20 , x = 0.

Define H1.

f1(x) =

{
0.98 , x = 1,

0.02 , x = 0.

Choosing the errors.
α = 0.01 (false negative),
β = 0.05 (false positive).
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Statistics Hypothesis testing

AIRBAG DEPLOYMENT EXAMPLE - 2

Boundaries
A := 1−β

α
= 95. B := β

1−α
= 0.051.

Taking samples
1 Airbag deploys.

0.051 < λ1 = f1(1)
f0(1) = 0.98

0.80 = 1.225 < 95.

2 Airbag deploys not.
0.051 < λ2 = f1(1,0)

f0(1,0) = 0.98·0.02
0.80·0.20 = 0.1225 < 95.

3 Airbag deploys not.
λ3 = f1(1,0,0)

f0(1,0,0) = 0.98·0.022

0.80·0.202 = 0.01225 < 0.051.
4 Conclusion: accept H0.
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Model checking

USING DES FOR CSL MODEL-CHECKING

Checking P≥θ (ρ),
ρ is a CSL path formula.

Simple case. No nesting of probabilistic statements.
ρ does not contain P.
Truth value of ρ can be determined without error.
Sequential sampling can be applied directly,
choose boundaries carefully.

Complicated case. Nesting of probabilistic statements.
ρ contains P operator.
Truth value of ρ can be erroneous.
How to handle innermost formula?
Adjust error bounds α′ and β′ for inner most formula,
could lead to more samples!
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Model checking

Boudewijn R. Haverkort.
Performance of Computer Communication Systems: A
Model-Based Approach.
John Wiley & Sons, Inc., 1998.

A. M. Law and W. D. Kelton.
Simulation, Modelling and Analysis.
McGraw-Hill Education, third edition, 2000.
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