V. Simulation

Sven Johr

Universität des Saarlandes

March 14, 2005

Datennetze II/Verifikation II

Powered by LATEX.

Sven Johr (Universität des Saarlandes)

V. Simulation

OUTLINE

1 DISCRETE EVENT SIMULATION

- Introduction
- Random numbers

2 STATISTICS

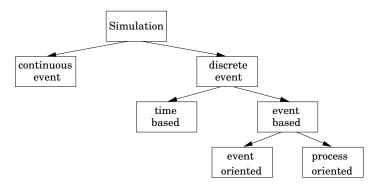
- Value estimation
- Hypothesis testing

3 MODEL CHECKING

SIMULATION

- Instead of numerically analysing a system.
- Perform single runs of the system.
 - Define a stopping criterion Ψ ,
 - continue simulating the system until Ψ is fulfilled.
- Collect information from single runs and make a conclusion.
- No exhaustive simulation,
 - result has some uncertainty.
- Time-advance mechanism is used.
 - Clock times are sampled,
 - simulation clock advances in a discrete step.
 - Simulation time \neq real time.

CLASSIFICATION



- Discrete-event simulation: systems are discrete state systems.
- Time is continuous.

TIME-BASED SIMULATION

- Define fixed step size Δt .
- Check whether events happen in $[t, t + \Delta t]$.
- If so, execute events.
- Advantage.
 - Easy to implement.
- Disadvantages.
 - Events are assumed to have no order.
 - events are assumed to be independent.

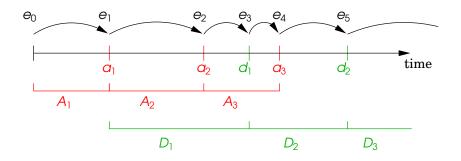
EVENT-BASED SIMULATION

- Time steps have variable length.
- Occurrence of events controls length of time step.
- Exactly one event per time step.
- Actual event causes future events to occur.
 - Gathered in an ordered event list.
- Events have to be inserted in order.

Discrete Event Simulation

Introduction

$EXAMPLE - G|G|1 \ \text{SIMULATION}$



Introduction

IMPLEMENTATION STRATEGIES

- Event oriented.
 - Procedure P_i for every event-type i.
 - *P_i* invoked if occurring event is of type *i*.
- Process oriented.
 - Associate process with each event-type.
 - Processes interchange information via communication.
 - Scheduling of events is done implicitly.

... AND PSEUDO RANDOM NUMBERS

- Generate random number from given probability distribution.
- Has to conform to the given distribution, otherwise
 - obtained simulation results are suspicious.
- True random numbers can not be generated with deterministic algorithms.
- Pseudo-random numbers are used.
 - $\bullet\,$ Generate pseudo-random series on finite subset of $\mathbb N.$
 - Compute pseudo-uniformly distributed numbers on [0, 1].
 - Verify if generated numbers can be regarded as true random numbers.
 - Compute non-uniform distributed pseudo-random numbers.

- *n* single runs or samples of the system have been performed.
- *n* is called the sample size.
- Measures of interest are recorded for each sample, e.g.,
 - (expected) waiting time in a queue,
 - (expected) number of jobs in a queue.
 - Remark: for both examples one has to simulate more than one customer!
- Statistics is used to estimate measure of interest for the complete system, i. e., for all possible system runs.

OBTAINING A CONCRETE VALUE

- E.g., estimation of mean value.
- Assert that mean value lies in a particular interval with given certainty.
- Interval is called confidence interval.
- Certainty is called confidence level.

Value estimation

ESTIMATING THE MEAN

- Estimate unknown mean value μ of random variable X.
- X is supposed to have unknown variance σ^2 .
- Our simulation generate *n* samples x_i , i = 1, 2, ..., n.
- Each x_i is a realisation of random variable X_i .
- $X_i, i = 1, 2, ..., n$ are independent and identically distributed with
 - $E[X_i] = \mu$, • $\sigma_X^2 = \sigma^2$.

• Estimator $\bar{X}(n)$ should be

• unbiased, i. e.,
$$E[\bar{X}(n)] = \mu$$
.

Intuition.

Perform very large number of experiments,

2 each resulting in an estimator $\bar{X}_i(n)$,

3 average of $\bar{X}_i(n)$ will be μ .

- Point estimator for the sample mean is $\bar{X}(n) = \frac{\sum_{i=1}^{n} X_i}{n}$.
- Point estimator for the sample variance is $S^2(n) = \frac{\sum_{i=1}^{n} [X_i \bar{X}(n)]^2}{n!}$.

ESTIMATING THE MEAN

• Problem with $\bar{X}(n)$ is

- how close is it to μ ?
- On one experiment it may be close,
- on another it may differ by a large amount.

• $\bar{X}(n)$ is a random variable with variance

• Var
$$[\bar{X}(n)] = \frac{\sigma^2}{n}$$

• An unbiased estimator of the variance is

•
$$\widehat{\operatorname{Var}}[\bar{X}(n)] = \frac{S^2(n)}{n}$$
.

- Construct the random variable $Z_n = \frac{\bar{X}(n) \mu}{\sqrt{\sigma^2/n}}$.
- Define $F_n(z) = \Pr(Z_n \le z)$, i. e., $F_n(z)$ is the probability distribution function of $Z_{\rm p}$.

THEOREM (CENTRAL LIMIT THEOREM)

 $F_n(z) \rightarrow \Phi(z)$ as $n \rightarrow \infty$, with

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-y^2/2} dy$$

•
$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
,

• density function of normal distribution with mean μ and variance σ^2 .

• Intuition behind Central Limit Theorem.

- Random variable $Z_n(z)$ is for large n distributed as a standard normal random variable
- independent of the distribution of the X_i .
- Thus, $\bar{X}(n)$ is distributed as a normal random variable with mean μ and variance $\frac{\sigma^2}{n}$.
- Generally, σ^2 is unknown.
- Replace σ^2 by $S^2(n)$ for sufficiently large n.
- $t_n = \frac{\bar{X}(n) \mu}{\sqrt{S^2(n)/n}}$ is approximately distributed as a standard normal random variable.

• For large *n* it follows

$$\Pr\left(-z_{1-\alpha/2} \leq \frac{\bar{X}(n) - \mu}{\sqrt{S^2(n)/n}} \leq z_{1-\alpha/2}\right)$$
$$= \Pr\left(\bar{X}(n) - z_{1-\alpha/2}\sqrt{\frac{S^2(n)}{n}} \leq \mu \leq \bar{X}(n) + z_{1-\alpha/2}\sqrt{\frac{S^2(n)}{n}}\right)$$
$$\approx 1 - \alpha$$

• Where $z_{1-\alpha/2}$ denotes the $1 - \alpha/2$ single sided critical value of the standard normal distribution.

• For sufficiently large *n* a confidence interval with confidence level $1 - \alpha$ is given by

$$\bar{X}(n) \pm z_{1-lpha/2} \sqrt{rac{S^2(n)}{n}}$$

Intuition.

- **1** Let $\beta = 1 \alpha$ be the desired confidence level,
- 2 construct a large number of independent confidence intervals with confidence level β ,
 - each based on *n* observations, with sufficiently large *n*,
- (3) the proportion of intervals containing μ is β .

• What does it mean?

...n sufficiently large...

- Too small *n* will cause a confidence level less than 1α .
- t_n is called a Student's t distribution with degree of freedom n-1.
 - For $n \to \infty$, t_n approaches the normal distribution.
- For a Student's distribution with n-1 degrees of freedom $t_{n-1,1-\alpha/2}$ is the $1-\alpha/2$ one sided critical value.

EXAMPLE

- $(x_1, x_2, \dots, x_5) = (0.108, 0.112, 0.111, 0.115, 0.098).$
- Sample mean $\bar{X}(5) = \frac{\sum_{i=1}^{5} x_i}{5} = 0.1088.$
- Sample variance $S^2(5) = \frac{\sum_{i=1}^{5} (x_i \bar{X}(5))^2}{5-1} = 0.0000427.$
- Confidence level is supposed to be $1 \alpha = 0.9$.
- Suppose 5 is sufficiently large.
 - Look up $z_{0.95} = 1.645$ for one-sided critical value.
 - **Pr** (0.1040 $\leq \mu \leq 0.1136$) = 0.9.
 - But you know, 5 will not be sufficiently large.
- Take Student's distribution.
 - Look up $t_{4,0.95} = 2.132$.
 - **Pr** (0.1026 $\leq \mu \leq$ 0.1150) = 0.9.

ANSWERING A YES/NO QUESTION

- No concrete estimation of a value possible.
- Reject or accept educated guess, but
 - there is no estimation of the real value.
- The question is different from value estimation.
- We want to know if we can accept/reject a particular assertion, usually called null-hypothesis.

HYPOTHESIS TESTING

- Formulate two mutually exclusive and exhaustive hypotheses,
 - null-hypothesis H_0 , here $f_0(x)$,
 - alternative hypothesis H_1 , here $f_1(x)$.
- Run a simulation and depending on the results
 - accept H_0 ,
 - accept H_1 .
- Since we are only taking samples, errors are involved
 - type I-error, significance, α error,
 - type II-error, β .
- α is called the wrong negative,
 - the probability to reject H_0 although it is true.
- β is called the wrong positive,
 - the probability to accept H_0 although H_1 is true.

SEQUENTIAL SAMPLING

- Instead of having a fixed sample size
 - evaluate probabilities after each sample.
- During simulation it could be that
 - there is enough evidence to
 - accept H_0 ,
 - reject H_0 ,
 - there is no evidence to accept/reject H_0 .
- A fixed sample size ignores this.
- With sequential sampling: decide after each sample if it is either
 - true, or
 - false, or
 - another sample is required.

Statistics

Hypothesis testing

DEVELOPING A TEST

- Sample space $M_m, m = 1, 2, \dots, \infty$,
 - M support of probability distribution,
 - $a \in M_m$ is called sample point of size m.
- Divide M_m in
 - R_m^0 ,
 - R_m^1 ,
 - R_m.

• Termination: sample point of size *n* falls in

- R_n^0 , accept H_0 ,
- R_n^1 , accept H_1 .

COMPUTING PROBABILITIES

- *k* samples have been taken.
- $g_{i,k}$: probability that H_i is true after k observations.
- *p_{i,k}*: probability density in *k*-dimensional sample space, assuming *H_i* is valid.
- $g_{i,k} := \frac{p_{i,k}(x_1, x_2, \dots, x_k)}{\sum_i p_{i,k}(x_1, x_2, \dots, x_k)}.$
- Accept either of the hypothesis if $g_{i,k}$ is above d_i .

$$\begin{array}{ll} \bullet & \frac{p_{1,k}(x_1,x_2,...,x_k)}{p_{0,k}(x_1,x_2,...,x_k)} \geq A, \mbox{ accept } H_1, \\ \bullet & \frac{p_{1,k}(x_1,x_2,...,x_k)}{p_{0,k}(x_1,x_2,...,x_k)} \leq B, \mbox{ accept } H_0. \end{array}$$

It can be shown

•
$$A \approx \frac{1-\beta}{\alpha}$$
,
• $B \approx \frac{\beta}{1-\alpha}$.

Statistics Hypothesis testing

PRECISELY

•
$$A := \frac{1-\beta}{\alpha}.$$

•
$$B := \frac{\beta}{1-\alpha}.$$

•
$$\lambda_n := \frac{p_{1,k}(x_1, x_2, \dots, x_k)}{p_{0,k}(x_1, x_2, \dots, x_k)}.$$

• Continue sampling when

•
$$B < \lambda_n < A$$
.

• Accept H_0 when

•
$$\lambda_n \leq B$$
.

• Reject H_0 when

•
$$\lambda_n \ge A$$

AIRBAG DEPLOYMENT EXAMPLE - 1

- FoVW car company's airbag deployment rate.
- Required rate 98%.
- Recent customer reports indicate rate 80%.
- Define H_0 .

•
$$f_0(x) = \begin{cases} 0.80 & , x = 1, \\ 0.20 & , x = 0. \end{cases}$$

• Define H_1 .

•
$$f_1(x) = \begin{cases} 0.98 & , x = 1, \\ 0.02 & , x = 0. \end{cases}$$

- Choosing the errors.
 - $\alpha = 0.01$ (false negative),
 - $\beta = 0.05$ (false positive).

Statistics

Hypothesis testing

AIRBAG DEPLOYMENT EXAMPLE - 2

•
$$A := \frac{1-\beta}{\alpha} = 95.$$
 Boundaries $B := \frac{\beta}{1-\alpha} = 0.051.$

Taking samples

Airbag deploys.

•
$$0.051 < \lambda_1 = \frac{f_1(1)}{f_0(1)} = \frac{0.98}{0.80} = 1.225 < 95.$$

Airbag deploys not.

•
$$0.051 < \lambda_2 = \frac{f_1(1,0)}{f_0(1,0)} = \frac{0.98 \cdot 0.02}{0.80 \cdot 0.20} = 0.1225 < 95.$$

Airbag deploys not.

•
$$\lambda_3 = \frac{f_1(1,0,0)}{f_0(1,0,0)} = \frac{0.98 \cdot 0.02^2}{0.80 \cdot 0.20^2} = 0.01225 < 0.051.$$

(a) Conclusion: accept H_{0} .

Model checking

USING DES FOR CSL MODEL-CHECKING

- Checking $\mathcal{P}_{\geq \theta}(\rho)$,
 - ρ is a CSL path formula.
- Simple case. No nesting of probabilistic statements.
 - ρ does not contain \mathcal{P} .
 - Truth value of ρ can be determined without error.
 - Sequential sampling can be applied directly,
 - choose boundaries carefully.
- Complicated case. Nesting of probabilistic statements.
 - ρ contains \mathcal{P} operator.
 - Truth value of ρ can be erroneous.
 - How to handle innermost formula?
 - Adjust error bounds α' and β' for inner most formula,
 - could lead to more samples!

Boudewijn R. Haverkort.

Performance of Computer Communication Systems: A Model-Based Approach. John Wiley & Sons, Inc., 1998.

A. M. Law and W. D. Kelton. Simulation, Modelling and Analysis. McGraw-Hill Education, third edition, 2000.

