Final Report Fopra Energy Consumption in
Ad-hoc Networks

Christian Gross

June 22, 2005

Contents

1

Introduction 3
1.1 Basic Access Method of IEEE 802.11 3
1.2 MoDeST, MoTor and Mébius 5
The Model 6
2.1 The Sender Process L. 7
2.2 The Receiver Process, 11
2.3 The Channel Process 12
2.4 The Energy Model 13
2.5 The Energy Economy Modes 14
2.6 The Monitor Process 15
Simulation Results 16
3.1 Assumptions 16
3.2 Energy Consumption Dependent on Maximum Transmission
Time 17
3.3 Duration of Successful Transmissions Dependent on Maximum
Transmission Time oL 18
3.4 Channel Usage Dependent on Load 19
3.5 Effects on Transmission Times in Cheating Case 20
3.6 Collision Times Dependent on Load 22
Conclusion 24
Appendix 25
51 Source Code 25

1 Introduction

The first goal of this work is to model and simulate the communication be-
tween stations according to IEEE 802.11 in adhoc modus using ’'basic access
method’. The second goal is to model the energy consumption and to intro-
duce various energy economy modes to reduce energy consumption of each
station. The implementation is conducted in the modelling and description
language MoDeST, the MoDeST tool environment MoTor and the perfor-
mance evaluation environment Mobius. Beside the energy consumption, the
total channel usage in various situations with different number of senders
and different loads is simulated.

1.1 Basic Access Method of IEEE 802.11

One of the basic classes of IEEE 802.11 is called Independent Service Set or
ad hoc network. In this class, stations communicate over a shared wireless
channel without a centralized medium access control protocol which would
guarantee a collisionfree access to the channel. If there is no such medium
access control present, it is mandatory to avoid collisions (simultaneous trans-
missions) as much as possible. A station is unable to listen to the channel
for collisions while transmitting. The IEEE 802.11 standard defines a Dis-
tributed Coordination Function (DCF) to overcome this problem.

One of the situations in which collisions can occur is the following: be-
fore a transmission is started a station has to monitor the channel until it
is considered to be free. After this the station can start the transmission at
the actual time t. Other stations can detect this transmission only after a
delay D at time ¢’. This delay consists of the time that the sending station
needs to switch from receiving mode to transmission mode, the time needed
to assess the channel and the airpropagation time. If another station decides
to start a transmission during this delay D, there will occur a collision. The
delay D is called the vulnerable period.

The Basic Access mechanism is as follows:

If a station wants to transmit a new packet, it has to monitor the channel as
long as it is free for a given duration DIFS (DCF interframe space), which is
at least as long as the delay D mentioned above. After sending the packet
the station listens to the channel. If another station is transmitting at this
time, the station decides that there has been a collision. If not it waits for
an acknowledgement. This will be sent after time SIFS (short interframe
space). If a station detects a collision it starts a backoff procedure, which is
an important feature of DCF. After the channel is free for at least the dura-

tion DIFS a backoff value is chosen randomly from the interval [0,aCWmin].
This value indicates the number of channel-free time periods (slottimes) af-
ter which the station may retransmit. The backoff value is decremented by 1
each time period the channel is considered to be free. If the backoff value is
0, the station starts retransmitting. If the channel is considered to be busy in
a time period, the backoff value will be kept and after the channel is free for
DIFS, it will be decremented again each time period the channel is considered
to be free. If a retransmission is not successful the station runs the backoff
procedure once more, in which case the interval of the backoff value is set to
be nearly double. If the interval is equal to [0,aCWmax| and the retransmis-
sion fails then the message is dropped. If a retransmission is successful the
next backoff value will be chosen from the interval [0,aCWmin].

Nevertheless, it is important to note that there are two situations, called
hidden terminal problem and exposed terminal problem, in which this basic
access procedure can fail. In the hidden terminal problem there are at least
two stations that are not in the same communication range of each other
and both send at the same time to other stations that are in the commu-
nication range of each. The following example describes such a situation
(see also Figure 1). Assume there are three stations A, B and C. A and
C cannot communicate because the distance between them is too large. B
can communicate to both. C does not have any ways to know that A is
transmitting packets to B and can decide to transmit packets to B at the
same time as A, which results in a collision. The situation in the exposed
terminal problem is similar. There are at least two stations that are not in
the same communication range of each other and both send messages to sta-
tions that are not in the communication range of the other sending station.
These receiver stations are in the same communication range and if they send
acknowledgements there occurs a collision. The following example describes
such a situation. As in the previous example there are three stations A, B
and C. Additionally there is a station D which can only communicate with C.
If A sends to B and at the same time D sends to C, then after receiving the
messages B and C have to send acknowledgements to their communication
partners, which causes a collision (see also Figure 2).

IEEE 802.11 defines another access method, called 'rts/cts’ to solve these
problems. In this access method the sender transmits first a 'ready-to-send
(rts)’ message, the receiver answers with a ’clear-to-send (cts)’ message and
after this handshake the sender starts to transmit the data.

In this work it is assumed that every station is in the communication range
of each others and hence this work focus on the basic access procedure.

Currently

L Wants to
Transmitting Transmit to B

Figure 1: The Hidden Terminal Problem.
Source: http://pcl.cs.ucla.edu/slides/workshop99/Ken-pw99/s1d008.htm

Currently
Transmitting
~aif—

Wants to
Transmit to D

—

Figure 2: The Exposed Terminal Problem.
Source: http://pcl.cs.ucla.edu/slides/workshop99/Ken-pw99/s1d009.htm

1.2 MoDeST, MoTor and Mobius

MoDeST is a modelling and description language for stochastic timed systems
with a syntax similar to C and Promela. The most important features in
MoDeST are:

1. non-deterministic choice

2. probabilistic branching
3. clocks

4. delay nondeterminism

MoDeST has a rigid formal basis such that formal reasoning is possible.
Because of the syntax similar to C and some constructs like simple data
types, modularisation and atomic statements, it is relatively easier to use
than some other rigorous formalisms based on stochastic process algebras.

Mo'Tor is a tool to facilitate the analysis of MoDeST models. With MoD-
eST a wide range of timed, probabilistic, nondeterministic, and stochastic
models can be covered. The spectrum of this covered models includes ordi-
nary labeled transition systems, discrete and continuous time Markov chains
and timed and probabilistic timed automata. Because of the enormous ex-
pressiveness there is no generic analysis algorithm at hand. The philosopy
behind MoTor is to connect MoDeST to existing tools and not to reimple-
ment existing analysis algorithms anew.

Mobius is a performance evaluation tool environment developed at the
University of Illinois at Urbana-Champaign, USA and supports several input
formalisms. Atomic models are specified in one of these input formalisms, for
example MoDeST. Furthermore the user can specify a reward model. In the
case of MoDeST, the user appoints in the reward model the global variables
that are monitored in a simulation. Mobius supports the definition of ex-
periment series, called studies. In these studies the user can define different
values for some parameters (in the case of MoDeST: values for global con-
stants that are marked as extern in the atomic model). The combinations of
all values defined for the different parameters define such series. One com-
bination is called an experiment. In the section solver, the experiments are
executed. The execution of one experiment is repeated until the values of the
monitored variables converge in a defined interval and the minimum number
of executions is reached or the maximum number of executions is reached.
The user can specify the minimum and maximum number of executions. A
nice feature of Md6bius is that one or more experiments can be executed on
some computers in parallel. The role of MoTor in the context of Mobius is
that the integration of MoDeST into Mobius is done by means of MoTor.

2 The Model

In the first step, the basic access method described at the beginning of this
report and the backoff procedure which is executed by a sending station when
a collision occurs, are modelled. In the second step the energy consumption,
three energy economy modes and a monitor process are modelled. It is as-
sumed that the clocks of all stations are synchronous all the time and for this
reason it is not necessary to model a distributed algorithm to synchronize

the clocks. Initially all stations that take part in the simulation try to start
sending a message and will collide. The values of the parameters that are
used in this work are summarized in Table 1. They are explained when they
occur for the first time.

‘ Parameter ‘ Value ‘
DIFS (DCF interframe space) 128
SIF'S (short interframe space) 28us
ASLOTTIME 50us
vulnerable period 48us
Trans_time_min 224us
Trans_time_max 15717 us
ACK_TO 300us
aCWmin 15
aCWmax 1024
transmission_factor 1.625
sensing_factor 1.475
idle_factor 0.08

Table 1: Important Parameters of IEEE 802.11 Used

There are three kinds of processes to model the communication:
1. Sender process
2. Receiver process
3. Channel process

These processes are executed in parallel by using the 'par’ construct of
MoDeST.

2.1 The Sender Process

The sender process models the behaviour of a station that sends messages
according to IEEE 802.11. The sender process has three parameters:

1. id: apositive integer. This is the "address” of a sender which a receiver
uses to answer to the sender.

2. load: a float in interval (0,1], which defines the frequency with which
a sender attempts to send new messages.

3. active: integer value. If it is greater or equal to id, then the sender
is active during simulation. If not the sender is not active.

At the beginning, a sender process verifies if it should be active by the
parameter active. If active is greater or equal to the parameter id the
process starts to send messages. Otherwise the process will stop (lines 3 and
5). An ’active’ sender inspects the channel.

1 process sender(int id, float load,int active) {

2 alt{

3 ::when(active<id) tau;

4 when(global_time==simulation_duration) tau

5 : :when(active>=id)

6 do{

7 : :when(ready_to_send!=true && initialsend!=true && y==633)

8 random_choice=Uniform(0,1);

9 altq

10 ::when (load>=random_choice) ready_to_send=true

11 ::when (load<random_choice)

12 do_nothing{= y=0,backoffswitch=true,

13 msg_to_send[id]=0 =}

14 }

15 : :when(ready_to_send || initialsend)

16 reset_clock_and_counter{=x=0,y=0,backoff_finished=!true,
17 continue_backoff=!true,

18 wait_DIFS=true,initialsend=!true,
19 msg_to_send[id]=1,ready_to_send=!true=};

Figure 3: Sender Model in MoDeST (1)

If the channel is free for DIFS, the sender enters the vulnerable period
and starts sending for a random duration d (lines 55 and 61). The value
of d is greater or equal to the parameter Trans_time min and less or equal
to Trans_time max (line 57). If in the vulnerable period another sender
decides to start sending too, there will occur a collision. The channel pro-
cess notices this and sets the variable collision to true. The sender which
has finished sending first, inspects the channel and notices that another pro-
cess is sending, decides there must be a collision and will retransmit after

performing the backoff procedure. The second process inspects the channel
too after sending, notices that the channel is free and waits for a receiver
acknowledgement.

20 do{::urgent(c.free==0 && backoffswitch!=true &&

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

continue_backoff!=true)

when (c.free==0 && backoffswitch!=true &&
continue_backoff !=true)
sl_enable_backoff {=backoffswitch=true=}

::when((backoffswitch || continue_backoff) &&

backoff_value>=0) deals_with_backoff{=x=0=};
alt{
: :when(wait_DIFS)
alt{

::when (x<DIFS && c.free==0 && wait_DIFS)
reset_sense_in_backoff{=x=0=};
when (c.free==1) tau

: :when (x>DIFS && c.free==1)
waited_DIFS_backoff {=wait_DIFS=!true=}
}

::when (wait_DIFS!=true)
alt{

: :when (backoffswitch) choose_backoffvalue

{=backoffswitch=!true,continue_backoff=true,
x=0,backoff_value=Uniform(-1,CW)=}

::when(continue_backoff) continuebackoff
{=backoffswitch=!true,continue_backoff=true,x=0=}
};

alt{

: :when (backoff_value<0) tau

: :when (x>=ASLOTTIME && c.free==1)
count_down_backoffvalue{=backoff_value-=1=}

: :when (x>=ASLOTTIME && c.free==0) freeze_backoff
{=continue_backoff=true,wait_DIFS=true=};
when (c.free==1) tau } 7} }

: :when(backoff_value < 0)

exit_backoff{=backoffswitch=!true,continue_backoff=!true,
backoff_finished=true,backoff_value=0=}

Figure 4: Sender Model in MoDeST (2)

Because of the collision there will be no such acknowledgement and after
ACK_TO time interval this sender starts retransmitting after performing the
backoff procedure too. The backoff procedure is also executed if a sender
notices a busy channel when it is waiting for the channel to be free for DIFS
(lines 20 and 25). In the backoff procedure a sender waits first until the
channel is free for DIFS. If so, a random float value in the interval [-1,CW] is
chosen.

54 ::when((x>DIFS || backoff_finished) && backoffswitch!=true

55 && continue_backoff!=true) enter_vulnerable_period

56 {=vuln_reached[id]=1.0,x=0,

57 sending_duration[id]=Uniform(Trans_time_min,Trans_time_max)=};
58 when (x>= VULN)

59 start_send{=sending+=1,is_sending[id]=1,x=0,backoffswitch=true,
60 c.m_in.destination=-id,c.m_in.source=id,c.m_in.content=5=};

61 ::urgent(x>=sending_duration[id]) when (x>=sending_duration[id])
62 send{=c.m_out.source=c.m_in.source,c.m_out.content=c.m_in.content,

63 c.m_out.destination=c.m_in.destination,sending-=1,

64 is_sending[id]=0 =}; x=0;

65 alt{

66 ::when (x==0 && sending>0)

67 detects_channel_busy_after_sending_and_will_resend

68 {=initialsend=true,CW=(CW+1)*2-1,vuln_reached[id]=0 =};
69 break

70 ::when(x==0 && sending==0) start_wait_for_ack {=x=0=};

71 alt{

72 ::urgent (c.m_out.destination==1d&&x>=SIFS+ACK_DURATION)
73 when (c.m_out.destination==1d&&x>=SIFS+ACK_DURATION)
74 ack_received_correct {=CW=aCWmin,

75 vuln_reached[id]=0=};break
76 ::when(x>ACK_TO && c.m_out.destination !=id)

77 alt{

78 : :when (CW< aCWmax)

79 will_resend_message{=initialsend=true,CW=(CW+1)*2-1,
80 vuln_reached[id]=0=};break

81 : :when (CW>=aCWmax) will_skip_message

82 {=vuln_reached[id]=0=};break

83 }

Figure 5: Sender Model in MoDeST (3)

10

If this value is less than 0 the sender enters vulnerable period and
starts sending. Otherwise it will be decreased by 1 everytime the channel
is free for ASLOTTIME (lines 46 and 47). If the channel is busy the actual
value will be kept and after the channel is again free for DIFS the value is
decreased again everytime the channel is free for ASLOTTIME (lines 48 and 28).
If a retransmission is necessary and the value of CW is less than aCWmax it
will be increased according to formula: CW = (CW +1)*«2 — 1. If a
retransmission is necessary and C'W is equal to aCWmax, the retransmission
is dropped (line 81). After a successful retransmission the value of CW is
reset to aCWmin.

The parameter load is a float value between zero and one that defines
the frequency a sender tries to send new messages. A load of one means that
a sender wants to send all the time and if the value approximates zero the
sender tries to send less often. This means concretely that, if a message has
been successfully sent, the process chooses a random value between zero and
one. If this value is less than the parameter load the process will directly
try to send another message. If not the process will wait for 633 useconds
and then repeat the random choice. The value 633 is chosen because it takes
at least 633 pseconds to successfully send a message and receive an acknowl-
edgement (128us DIFS + 48us vulnerable period + 224us transmission +
28us SIFS + 205us acknowlegement).

2.2 The Receiver Process

This process models the behaviour of a station that receives messages and
sends acknowledgements to the senders according to IEEE 802.11. A receiver
process has a parameter id. If there is a message with the destination id
and there is no collision the process receives the message and answers after
SIFS with an ack message containing the id of the sender (lines 5 and 7).

11

1 process receiver(int id)

2 A

3 clock y;

4 doq

5 ::when(c.m_out.destination==id && collision!=true)

6 receive{=y=0,c.m_out.destination=0,source=c.m_out.source=};
7 urgent (y>=SIFS) when(y>=SIFS) start_send_ack

8 {=y=0,ack+=1,c.m_in.destination=source,c.m_in.source=id,
9 receiver_is_sending=true,sending+=1=};

10 urgent (y>=ACK_DURATION) when(y>=ACK_DURATION)

11 send_ack{=c.m_out.source=c.m_in.source,

12 c.m_out.destination=c.m_in.destination,

13 receiver_is_sending=!true,

14 sending-=1,time_receiver_send+=y=}

15 }

16}

Figure 6: Receiver Model in MoDeST (3)

2.3 The Channel Process

The channel process monitors if there is a process sending and if so whether
a collision occurs. If this is the case then the process deletes the content of
the channel and sets the variable collision to true (lines 6 and 8) . The
result is that the corresponding receiver process does not get the message.

12

1 process chan()

2 A

3 bool sending_enabled=!true;

4 doq

5 ::when(sending>=1 &% sending_enabled!=true)

6 use_of_channel_detected{=sending_enabled=true,c.free=0=}

7

8 : :when(sending>=2 && collision!=true) collision_detected

9 {=collision=true,c.free=0,number_of_collisions+=1,

10 c.m_in.destination=0,c.m_in.content=0,c.m_in.source=0,

11 c.m_out.destination=0,c.m_out.content=0,c.m_out.source=0=}
12

13 ::when(sending==0 && sending_enabled)

14 channel_is_free{=c.free=1,collision=!true,sending_enabled=!true=}
15 }

16 }

Figure 7: Channel Model in MoDeST (3)

2.4 The Energy Model

The energy consumption is modelled through measuring the duration a sta-
tion is sending, receiving or sleeping and multiplying this durations with
appropriate factors. The energy consumption of a station depends on the
current activity. There are four energy levels in this work. Transmitting a
message costs more energy than receiving a message which costs more energy
than being in sleeping respectively in standby mode. There is no energy con-
sumption if the process is not active. The duration that a station is in one
of these energy levels is measured using clocks and multiplied with different
factors and added in energy consumption variables. The different factors
are called transmission_factor, sensing factor and idle_factor. The
change from sleeping mode to receiving mode takes some time and costs some
energy but it is assumed in the model that this change takes no time. The
energy consumption is modelled by adding a constant value. The values for
these factors have been chosen according to [6].

13

The following enumerates the energy consumption model in detail:

1. When a process (sender_s) decides to send a new message (based on the
load), clock y is reset to zero (action: reset_clock_and_counter). When
the process enters vulnerable period the value of y is multiplied with
the sensing factor and added to the variable energy_sender [s] (ini-
tial value zero, s€ [1,number_of_senders]).

2. Then the clock z is reset to zero and after the transmission (action send)
of the message the value of z is multiplied with the transmission _factor
and added to energy_sender[s].

3. The clock z is reset again to zero. When the acknowledgement arrives,
the value of x is multiplied with the sensing factor and added to
energy_sender [s].

4. If no acknowledgement arrives then the value of x is multiplied with
the sensing factor, added to energy_sender [s] if x equals ACK_TO.

5. If a sender waits to start to send a new message based on load then
the time until the sender decides to send a new message is multiplied
with idle_factor and added to energy_sender[s].

2.5 The Energy Economy Modes

A nice feature of the following energy economy modes is that they are trans-
parent to the standard which means that there is no difference in the com-
munication behaviour, only the energy consumed by a process is lower. The
realization is done by using some additional variables to store the consumed
energy in the various economy modes. The advantage of this transparence is
that all economy modes can be simulated at the same time.

Model: Idea: If the sender notices the channel to be busy in backoff pro-
cedure , it is so at least Trans_time_min — ASLOTTIME and the sender will
sleep for this time.

Realization: When the sender s notices the channel busy in the backoff pro-
cedure, Trans_time min — ASLOTTIME is added to sleep_model[s] and the
value of the constant turn_on_off_const is added to energy_economy_mode [s].
When the sender s enters vulnerable period

(y — sleep.model[s])*sensing factor + sleep_model[s]xidle factor

14

is added to energy_sender_economy_mode [s]. The further steps are analo-
gous to above-mentioned energy consumption model 2-5
(energy_sender_economy_mode [s] instead of energy_sender[s]).

Mode2: Idea: The sender sleeps in backoff procedure almost the whole
ASLOTTIME. At the start of a new ASLOTTIME the sender looks at the channel
and sleeps again.

Realization: When the channel is free for ASLOTTIME in the backoff procedure,
ASLOTTIME — 10 is added to sleep-mode2[s| and the value of the constant
turn_on_off_const is added to energy_economy_mode2[s|]. When the sender
s enters vulnerable period (y — sleep_mode2[s])*sensing factor +
sleep_mode2[s]*idle_factor is added to energy_sender_economy mode2[s].
The further steps are analogous to above-mentioned energy consumption
model 2-5 (energy_sender_economy_mode2 [s] instead of energy_sender [s]).

Mode3: Idea: Combine Model and Mode2

Realization: When the sender notices the channel to be busy in the backoff
procedure, Trans_time min — ASLOTTIME is added to sleep_model[s] and

the value of the constant turn_on_off _const is added to energy_economy mode3[s].
When the channel is free for ASLOTTIME in the backoff procedure,

ASLOTTIME — 10 is added to sleep_mode2[s] and the value of the con-
stant turn_on_off_const is added to energy_economy_mode3[s]. When the
sender s enters vulnerable period (y — sleep_model[s] — sleep_mode2[s])
* sensing factor + (sleep.model[s] + sleep_mode2[s])*idle_factor

is added to energy_sender_economy_mode3[s]. The further steps are anal-
ogous to above-mentioned energy consumption model 2-5
(energy_sender_economy mode3[s] instead of energy_sender[s]).

2.6 The Monitor Process

The monitor process records the energy consumption of each sender, the time
the channel is used respectively not used, the time the channel is free and
the time there is a collision on the channel. This is not done directly in the
particular processes (sender, channel), because it is more elegant to segregate
the communication model and the energy model. There is a nice feature in
MoDeST which can be used for this purpose. Actions can be declared and
linked with some assignments. The recording of the values mentioned above
is realized by ”synchronizing” on actions. This means that the action names
that appear in the sender respectively channel process are also present in

15

the monitor process. Every time an action linked with some assignments is
executed in the sender/channel process the action with the same name in the
monitor process is executed too and the variables which measure the time a
sender transmits, store the energy consumption, channel usage and so on are
updated. An example:
If a sender starts transmitting a message, then the monitor measures the
time between the actions ”start_send” and "send” , multiplies this with the
transmission_factor and adds to the energy variable of this sender. If
the simulation duration is reached the monitor updates the recorded values
dependent on the current activity of the corresponding sender.

For further detail of the way the monitor process and the various energy
models are implemented in MoDeST, please consult the appendix.

3 Simulation Results

The communication with up to six sender processes, various loads and various
values for the parameter Trans_time_max has been simulated. The simulation
duration is 300000 puseconds. This is long enough to see as the communication
works and short enough to keep the time to execute the simulation low. The
tool gnuplot has been used to plot the results. All simulations have been
executed on a pentium 4 celeron D computer with 2.93 MHZ, 1024 MB
RAM and Mandrake Linux 10.0 with kernel 2.4.23 as operating system. The
time to execute the simulation series differs from few minutes to about 2
hours.

3.1 Assumptions

The following enumerates the assumptions in this work.
1. At the beginning all sender stations send at the same time.

2. The simulation duration is 300000 us.

w

. The change between the energy levels takes no time.

4. A Sender process doesn’t receive messages except for acknowledge-
ments.

5. All stations are in the same communication range.

16

3.2 Energy Consumption Dependent on Maximum Trans-
mission Time

460

440

420

400

energy consumption [mWs]

380

360 regular
economy mode 1
economy mode 2 ----------
economy mode 3

o 2000 4000 6000 8000 10000 12000 14000
Trans_time_max

Figure 8: Energy Consumption in IEEE 802.11 Dependent on Max. Trans-
mission Time

In the first experiment series three senders send messages to three receivers
and the maximum transmission time is increased step by step from 717us
by 1000us until it is equal to 15717us. All senders have a load of one
which means that they try to send another message directly after receiving
an acknowledgement for the last message. Figure 8 shows the regular energy
consumption and the energy consumption of the three economy modes for one
sender. The energy consumption of the three economy modes is lower than
the regular energy consumption independent of the maximum transmission
time. The economy mode two consumes slightly less energy than economy
mode one. Both consume clearly more energy than economy mode three. The
reason is that economy mode three combines the economy modes one and
two. The difference between the regular energy consumption and the energy
consumption of the economy modes decreases if the maximum transmission
time is increased. An explanation for this is that the average transmission

17

time is higher if the maximum transmission time is increased, hence the
backoff procedure is called less often and the economy modes can switch
less often into sleep mode. The regular energy consumption increases if the
maximum transmission time is increased. This can be explained by the fact
that the percentage of channel usage increases if the maximum transmission
time increases. If there is more activity at the channel, then the senders
transmit more often and for a longer duration and the energy consumption
increases.

3.3 Duration of Successful Transmissions Dependent
on Maximum Transmission Time

100

90

80

. o

9% time for successful transmissions
\

60

T

50

(o] 2000 4000 6000 8000 10000 12000 14000
Trans_time_max

Figure 9: Successful Transmission Times Dependent on Max. Transmission
Time

Figure 9 shows the above-mentioned percentage of time in which the senders
transmit successfully messages dependent on the maximum transmission
time. The situation is the same as in Figure 8. There are three senders
with a load of one and three receivers. The percentage of time increases fast

18

from about 50 per cent in the case of 717us maximum transmission to about
5 per cent in the case of 8000us maximum transmission time. When the
maximum transmission time increases further to 15717us the percentage of
channel usage increases only about to 78 per cent.

3.4 Channel Usage Dependent on Load

In a further experiment series up to six senders send messages to up to six
receivers. The percentage of channel usage dependent on the load of the
senders is observed. Channel usage means the time where at least one sender
or one receiver transmits a message and so includes the time when there is a
collision. As shown in Figure 10 the percentage of channel usage increases a
lot if the load of the senders increases from 0.01 to 0.11 while the percentage
of channel usage decreases only moderately if the load increases from 0.11 to
1. If the load is equal to one the percentage of channel usage is nearly the
same independent on the number of senders. If the load is equal to 0.01 the
percentage of channel usage is less than 20 in the the case of one sender and
more than 80 in the case of six senders.

100

80

60

% usage

40

20 |

1 sender
2 sender
3 sender ----------
4 sender
5 sender
6 sentljer

(o] 0.2 0.4 0.6 0.8 1

Figure 10: Channel Usage Percentage in IEEE 802.11

19

3.5 Effects on Transmission Times in Cheating Case

50

T T T
transmission time senderl ——
transmission time sender 2

transmission time sender 3 EEEER

40

30

percentage transmission time

1.5
#cheaters

Figure 11: Transmission Times in IEEE 802.11 in Cheating Case (3 Senders)

In a further experiment series three senders send messages to three receivers.
The senders have a 1oad of one. The effects on the transmission time of each
sender, that occur if one, two or all senders try to increase their transmission
time, are observed. In the model the backoff procedure is executed if a
sender wants to send again directly after it has successfully sent a message.
However if a sender wants to send another message to a later moment, it
doesn’t perform the backoff procedure but if the channel is free for DIFS
time units it starts transmitting. This is the background for a cheating idea
in the case of high loads. If a sender wants to send more often, it waits after
sending a message a short time. After this it tries to send without using the
backoff procedure. This will be successful if the other senders are performing
the backoff procedure and no sender will finish the backoff procedure within
DIFS time units. If a sender finishes the backoff procedure within DIFS time
units there are two possibilities. There is a collision because both transmit
at the same time or the sender that has tried to get an advantage of not
performing the backoff procedure has to perform this procedure because the

20

channel is busy. Figure 11 shows the transmission times for three senders in
the described situation. In case of i cheaters sender 1 until sender ¢ cheat.
If no sender cheats, all senders have nearly the same transmission times.
This changes dramaticly if sender one cheats. The transmission time of this
sender increases about 75 per cent while the transmission times of sender
two and three decrease by about 50 per cent. If sender one and sender
two cheat, the transmission times of both increase by about 37.5 per cent
and the transmission time of sender three decreases by about 65 per cent
in comparison to the situation in which no sender cheats. When all senders
cheat, no sender gets an advantage and the transmission times are similar to
the situation in which no sender cheats.

Figure 12 shows the transmission times of six senders with a load of one
dependent on the number of senders that cheat by not performing the backoff
procedure as described above. All senders have nearly the same transmission
time if no sender cheats and if all senders cheat. As in the situation with
3 senders the transmission times of senders that cheat increase while the
transmission times of the other senders decrease.

50

T T T
transmission time senderl ==
transmission time sender 2
transmission time sender 3 mossssen
transmission time sender 4
transmission time sender 5
transmission time sender 6

40

30

20

Percentage transmission time

10

o 1 2 3 4 5 6
#cheaters

Figure 12: Transmission Times in IEEE 802.11 in Cheating Case (6 senders)

21

3.6 Collision Times Dependent on Load

Figure 13 shows the percentage of collision times dependent on the load of
the senders. In this experiment series up to six senders send messages to up
to six receivers. The collision time is defined as the time in which the senders
cannot use the channel because of a collision. The load increases from 0.01
to one. If the number of senders increases, the collision times increase too.
This is a behaviour which is expected. The behaviour that is not expected is
that the collision times increase in the case of the loads are equal to 0.01 up
to 0.11 and then decrease if the loads are equal to 0.21 to one. In the case
of six senders and a load of 0.1 the percentage of collision times is greater
is almost 50. If the load increases to one the percentage of collision times
decreases to less than 25.

50

T
2 sender
3 sender
4 sender ----------
5 sender
6 sender

40

30 [

0
20 Ff
\

percentage of time collision at the channel
/

10 H

Figure 13: Collision Times in IEEE 802.11 (a)

The percentage of collision times as shown in Figure 13 raises the ques-
tion why the collision times in the case of a load of 0.1 are higher than those
in the case of a 1load of one. The mechanism that prevents or minimises col-
lisions is the backoff procedure. In the model a sender does not perform this
procedure if it wants to send another message which does not directly arrive

22

after successfully sending a message. A further experiment series inspects if
this behaviour causes the large collision times in the case of the low loads.
For this purpose there are again up to six senders and six receivers that
communicate. The load increases again from 0.01 to one. The difference
between these series is that in the new series a sender performs the backoff
procedure every time it wants to send a new message.

50 T
2 sender
3 sender
4 sender ----------
5 sender
6 sender

40

30

20

percentage time collision at the channel

10

Figure 14: Collision Times in IEEE 802.11 (b)

Figure 14 shows the percentage of collision times in this situation. The
collision times increase if there are more senders and if the load of these
senders increases. In the case of six senders and a load of 0.1 the percentage
of collision times is less than 25. The reduction of the collision times in this
experiment series shows that it is useful to perform the backoff procedure
every time when a new message has to be sent.

23

4 Conclusion

In this work the communication between stations according to 802.11 in ad
hoc modus using the basic access procedure is modelled and simulated. Fur-
thermore three energy economy modes are introduced and their performance
dependent on various maximum transmission times is evaluated. Moreover
the duration of collisions on the channel with various loads of some senders
and various rules of calling the backoff procedure is simulated. The effects if
one or more sender try to increase the throughput are investigated too.

During the development the following experiences with the language MoD-
eST and the tools MoTor and Md&bius has been collected:
The syntax of MoDeST is similar to C and Promela such that it looks quite
familiar. Although the language knows the keyword true, the counterpart
false is not known. Further it is not possible to declare an array of clocks,
which could be useful in a monitor process as described in this work. The
command Uniform() only returns float values. An option for integer values
would be useful. The palt construction only accepts constant integer values
as parameters. Experiment series with various probabilities using this con-
struct are not possible. If the relabeling feature for actions is used, there is
no relabeling in the debugging mode 1. This means that it is not possible to
see which instance of a process has taken this action.

References

[1] Joost-Pieter Katoen, Henrik Bohnenkamp, Ric Klaren and Holger Her-
manns. Embedded Software Analysis with MoTor. Lecture Notes in
Computer Science 3185, Springer-Verlag, pp. 268-293, 2004.

2] Ric Klaren. MoDeST Language Manual. Formal Methods and Tools
Group, University of Twente. http://fmt.cs.utwente.nl/tools/motor/

3] ANSI/IEEE Std 802.11, 1999 Edition (R2003).
http://standards.ieee.org/getieee802/download/802.11-1999.pdf

[4] Marta Kwiatkowska, Gethin Norman and Jeremy Sproston. Probabilis-
tic Model Checking of the IEEE 802.11 Wireless Local Area Network
Protocol. Lecture Notes in Computer Science 2399, Springer-Verlag, pp.
169, 2002.

[5] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric
Klaren. MoDeST - A Modelling and Description Language for Stochas-

24

tic Timed Systems. Lecture Notes in Computer Science 2165, Springer-
Verlag, pp. 87, 2001.

[6] Paul J.M. Havinga, Gerard J.M. Smit. Energy-Efficient Wireless Net-
working for Multimedia Applications. Wireless Communications and
Mobile Computing, Vol.1, Wiley, pp. 165-184, 2001.

[7] Mébius: User Manual. PERFORM Performability Engineering Re-
search Group, University of Illinois at Urbana-Champaign, 2005.
http://www.mobius.uiuc.edu/

5 Appendix

5.1 Source Code

action enable_backoff ,start_wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send,exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do_-nothing ,do_nothingl ,
do_nothing2 ,do-nothing3 ,do_-nothing4 ,do_-nothing5 ,do_nothing6 ,
will_resend_message ,ack_received_correct ,waited_DIFS_backoff,
enter_vulnerable_period ,will_skip_message ,
detects_channel_busy_after_sending_and_will_resend ,

sl_enable_backoff ,sl_start_wait_-for_ack ,sl_reset_clock_and_counter ,
sl_choose_backoffvalue ,sl_continue_backoff ,sl_count_down_backoffvalue ,
sl_freeze_backoff ,sl_start_send ,sl_send ,sl_exit_backoff ,
sl_deals_with_backoff ,sl_reset_sense_in_backoff ,sl_do_nothing ,
sl_will_resend_message ,sl_ack_received_correct ,sl_waited_DIFS_backoff ,
sl_enter_vulnerable_period ,sl_will_skip_-message ,
sl_detects_channel_busy_after_sending_-and_-will_resend ,

s2_enable_backoff ,s2_start_wait_-for_ack ,s2_reset_clock_and_counter ,
s2_choose_backoffvalue ,s2_continue_backoff ;s2_count_down_backoffvalue ,
s2_freeze_backoff ,s2_start_send ,s2_send ,s2_exit_backoff ,
s2_deals_with_backoff ,s2_reset_sense_in_backoff ,s2_do_nothing,
s2_will_resend_message ,s2_ack_received_correct ,s2_waited_DIFS_backoff ,
s2_enter_vulnerable_period ,s2_will_skip_-message ,
s2_detects_channel_busy_after_sending_-and_will_resend ,

s3_enable_backoff ,s3_start_wait_for_ack ,s3_reset_clock_and_counter ,
s3_choose_backoffvalue ,s3_continue_backoff ,s3_count_down_backoffvalue ,
s3_freeze_backoff ,s3_start_send ,s3_send ,s3_exit_backoff ,
s3_deals_with_backoff ,s3_reset_sense_in_backoff ,s3_do_nothing,
s3_will_resend_message ,s3_ack_received_correct ,s3_waited_DIFS_backoff ,
s3_enter_vulnerable_period ,s3_will_skip_message ,
s3_detects_channel_busy_after_sending_and_will_resend ,

s4_enable_backoff ,sd4_start_wait_-for_ack ,s4_reset_clock_and_counter ,
s4d_choose_backoffvalue ,s4_continue_backoff ;s4_count_down_backoffvalue ,
s4_freeze_backoff ,s4_start_send ,sd4_send ,sd_exit_backoff ,
s4_deals_with_backoff ,s4_reset_sense_in_backoff ,s4_do_nothing,
s4_will_resend_message ,s4_ack_received_correct ,s4_waited_DIFS_backoff ,
s4_enter_vulnerable_period ,s4_will_skip_-message ,
s4_detects_channel_busy_after_sending_-and_will_resend ,

sb_enable_backoff ,s5_start_wait_-for_ack ,sb_reset_clock_and_counter ,
sb_choose_backoffvalue ,s5_continue_backoff ,s5_count_down_backoffvalue ,
sb_freeze_backoff ,sb_start_send ,s5_send ,sb5_exit_backoff ,
sb_deals_with_backoff ,s5_reset_sense_in_backoff ,s5_do_nothing,
s5_will_resend_message ,sb5_ack_received_correct ,s5_waited_DIFS_backoff ,
sb_enter_vulnerable_period ,s5_will_skip_message ,
sb_detects_channel_busy_after_sending_and_will_resend ,

s6_enable_backoff ,s6_start_wait_for_ack ,s6_reset_clock_and_counter ,
s6_choose_backoffvalue ,s6_continue_backoff ,s6_count_down_backoffvalue ,
s6_freeze_backoff ,s6_start_send ,s6_send ,s6_exit_backoff ,
s6_deals_with_backoff ,s6_reset_sense_in_backoff ,s6_do_nothing,

25

s6_will_resend_message ,s6_ack_-received_correct ,s6_waited_DIFS_backoff ,
s6_enter_vulnerable_period ,s6_will_skip_-message ,
s6_detects_channel_busy_after_sending_-and_will_resend ,

receive ,start_send_ack ,send_ack ,

rl_receive ,rl_start_send_ack ,rl_send_ack ,
r2_receive ,r2_start_send_ack ,r2_send_ack ,
r3_receive ,r3_start_send_ack ,r3_send._ack ,
rd_receive ,rd_start_send_ack ,r4_send_ack ,
r5_receive ,rb5_start_send_ack ,r5_send._ack ,
r6_receive ,r6_start_send_ack ,r6_send_ack ,

collision_detected ,channel_is_free ,
use_of_channel_detected ,channel_corrupted ,
channel_ready_after_corrupted;

const int SIFS = 28;

const int DIFS = 128;

const int aCWmin = 15;

const int aCWmax = 1023;

const int ACK.TO = 300;

const int ACKDURATION= 205;
const int ASLOTTIME=50;

const int VULN=48;

const int TRANS_TIME_MIN=224;
const int number_of_senders = 6;

extern const int TRANSTIMEMAX; //original value 15717
extern const float simulation_duration;

extern const float transmitting_factor;//=1.625;
extern const float sensing_factor;//=1.475;
extern const float idle_factor; //=0.08;

extern const float turn_on_off_const;

extern const int chan_corrupted_max;

extern const int chan_corrupted_min;

extern const int t_intervall;

extern const float turn_on_off_const2;

extern const float loadl;

extern const int active_senders;

extern const float probability_chan_corrupted;

clock global_time;

int messages_send [number_of_senders +1];

float sending_-duration|[number_of_senders+1];

float dur_chan_corrupted ;

int ack;

int sending;

float is_sending|[number_of_senders+1];

int number_of_collisions;

bool receiver_is_sending;

bool collision;

float coll=0;

float time_in_coll=0;

float energy_sender [number_of_senders +1];

float energy-sender_economy_mode[number_of_senders +1];
float energy_sender_economy_mode2 [number_of_senders+1];
float energy_sender_economy_mode3 [number_of_senders+1];
float sleep-model [number_of_senders+1];

float sleep-mode2[number_of_senders +1];

float time_sender_send [number_of_senders +1];

float time_sender_channel_used_not_-successful [number_of_senders +1];
float time_receiver_send;

float time_channel_used;

float time_channel_not_used;

float time_channel_error;

float vuln_reached [number_of_senders+1];

float msg-to_send [number_of_senders +1];

typedef struct { //represents a message
int source;
int destination;
int content;

} MESSAGE;

typedef struct { //represents the channel
float free;

MESSAGE m_in;

MESSAGE m_out ;

} CHANNEL;

CHANNEL c ;

process sender(int id,float load,int active)

26

{

clock x,y;

float backoff_value;

int CW=aCWmin;

bool wait_DIFS=true;

bool backoffswitch=!true;

bool continue_backoff=!true;

bool backoff_finished=!true;

bool initialsend=true;

bool ready-to_-send=true;

float random_choice;

c.free=1;

alt{
::when(active<id)tau;when(global_time==simulation_duration) tau
::when(active>=id)

do{
::when (ready_to_send!=true && initialsend!=true && y==634)
random_choice=Uniform (0 ,1);

alt{
::when (load>=random_choice) ready_to_send=true
::when (load<random_choice)
do_nothing{=y=0,backoffswitch=!true , msg_to_send [id]=0=}
::when(ready_-to_send || initialsend)

reset_clock_and_counter{=x=0,y=0,backoff_finished =!true,
continue_backoff=!true,
wait_DIFS=true ,initialsend =!true ,
sleep-model [id]=0,
sleep.mode2[id]=0,msg_to_send [id]=1,
ready_to_send=!true=};
do{
rurgent (c.free==0 && backoffswitch!=true &&
continue_backoff!=true)
when (c.free==0&& backoffswitch!=true &&
continue_backoff!=true)
sl_enable_backoff {= backoffswitch=true =}

// the ” backoff—procedure”

::when((backoffswitch || continue_backoff) && backoff_value >=0)
deals_with_backoff{= x=0 =};
alt{
:when (wait_DIFS)
alt{
:: when (x<DIFS && c.free==0 && wait_DIFS)
reset_sense_in_backoff{=x=0=};when(c.free==1) tau

:: when (x>DIFS && c.free==1)
waited _DIFS_backoff{=wait_DIFS=!true=}

::when (wait_DIFS!=true)
alt{
::when(backoffswitch)choose_backoffvalue
{=backoffswitch=!true,continue_backoff=true ,x=0,
backoff_value=Uniform(—1,CW)=}
::when(continue_backoff)continuebackoff
{=backoffswitch=!true,continue_backoff=true ,x=0=}

3

alt{
::when(backoff_value <0) tau

:: when (x>=ASLOTTIME && c.free==1)
count_-down_backoffvalue{=backoff_value —=1=}

:: when (x>=ASLOTTIME && c. free==0)
freeze_backoff{=continue_backoff=true,

wait_DIFS=true=};

when (c.free==1) tau

}

::when(backoff_value < 0)
exit_backoff{=backoffswitch=!true,continue_backoff=!true,
backoff_finished=true ,backoff_value=0=}

//enter vulnerable period and send
::when ((x>DIFS || backoff_finished) && backoffswitch!=true
&& continue_backoff!=true)
enter_vulnerable_period
{=vuln_reached [id]=1.0,x=0,
sending._-duration [id]=Uniform (TRANS_TIME_MIN , TRANS_TIME_ MAX) = };
when (x>=VULN) start_send
{=sending+=1,is_sending [id]=1,x=0,backoffswitch=true,
c.m_in.destination=—id ,c. m_in. source=id ,
c.m_in.content=5=};

27

urgent (x>=sending_duration[id])

when (x>=sending_duration [id])

send{=c.m_out.source=c.m_in.source,
c.m_out.content=c.m_in.content ,
c.m_out.destination=c.m_in.destination ,
sending —=1,is_sending [id]=0=};

: when (x==0 && sending >0)
detects_channel_busy_-after_sending_and_will_resend
{= initialsend=true ,CW=(CW+1)*2—1,vuln_reached [id]=0 =};break
:: when (x==0 && sending==0) start_wait_for_ack {=x=0=};
alt {
::urgent(c.m_out.destination==id && x>= SIFS+ ACK_DURATION)
when (c.m_out.destination=—=id && x>= SIFS+ ACK_DURATION)
ack_received_correct {=CW=aCWmin, messages_send [id]+=1,
vuln_reached [id]=0=};break
::when (x>ACK.TO && c¢.m_out.destination !=id)
alt {
:: when (CW< aCWmax)
will_resend_message
{=initialsend=true ,C(W=(CW+1)*2—1,vuln_reached [id]=0=};break
:: when (CW>=aCWmax) will_skip_message
{= vuln_reached [id]=0 =};break

}

process receiver (int id)

clock y;

int

do{

}
}

source =0;

:when(c.m_out.destination==id && collision!=true)

receive{=y=0,c.m_out.destination=0,source=c.m_out.source =};

urgent (y>=SIFS) when(y>=SIFS) start_send.ack

{=y=0,ack+=1,c. m_in. destination=source ,c.m._in.source=id ,

receiver_is_sending=true ,sending+=1=};

urgent (y>=ACK DURATION) when (y>=ACK_DURATION)

send_ack{=c.m_out.source=c.m._in.source,
c.m_out.destination=c.m_in.destination ,
receiver_is_sending=!true, sending—=1,
time_receiver_send+=y=}

process chan ()

clock timerl ,timer_coll ,disturb;
float random_choice;

bool

do{

sending_enabled=!true;

:when(sending >=1 && sending_enabled!=true)random_choice=Uniform (0,1);

alt{
::when(random_choice>probability_chan_corrupted)
use_of_channel_detected{=sending_enabled=true ,c.free=0=}
:when(random_choice<=probability_chan_corrupted)
channel_corrupted
{=collision=true ,c.free=0,sending_enabled=true ,disturb=0,
c.m_in.destination=0,c. m_in.content=0,c. m_in.source=0,
c.m_out.destination=0,c.m_out.content=0,c. m_out.source =0,
dur_chan_corrupted=Uniform(chan_corrupted_min ,chan_corrupted_max),
time_channel_error+=dur_chan_corrupted =};
when(disturb==dur_chan_corrupted)channel_ready_after_corrupted
{= collision=!true=}

::when(sending >=2 && collision!=true) collision_detected

{= collision=true ,c.free=0,number_of_collisions+=1,
c.m_in.destination=0,c. m_in.content=0,c. m_in.source =0,
c.m_out.destination=0,c.m_out.content=0,c. m_out.source=0=}

::when(sending==0 && sending_enabled)

channel_is_free{=c.free=1,collision=!true ,sending_enabled=!true=}

28

process monitor ()

clock x,y,z,x2,y2,22,x3,y3,23,timerl ,timer_coll ,
x4 ,y4,2z4 ,x5,y5,25,%x6 ,y6,26;

int on_off [number_of_senders +1];

do{
::sl_do_nothing{=energy_sender_economy._mode[l]+=turn_on_off_constxon_off[1],

energy_sender_economy_mode2[l]+=turn_on_off_const*on_off[1],

energy-sender[l]+=turn_on_off_constxon_off[1],

energy_sender_economy_mode3[l]+=turn_on_off_constxon_off [1],on_off[1]=0=}

:sl_reset_clock_and_counter{=x=0,y=0,

energy-sender[l]+=zxidle_factor4+zxturn_on_off_const2/t_intervall ,on_off[1]=1;
energy_sender_economy_mode [1] += zxidle_factor+zxturn_on_off_const2/t_intervall ,
energy_sender_economy_mode2[1] += zxidle_factor+z*xturn_on_off_const2/t_intervall ,
energy_sender_economy_-mode3[1] += zxidle_factor+z*turn_on_off_const2/t_intervall=}

:sl_freeze_backoff{=sleep_.model[1]+=TRANS_TIME_MIN—ASLOTTIME,
energy._sender_economy_mode[l]4+=turn_on_off_const ,
energy._sender_economy_mode3[l]+=turn_on_off_const=}

::sl_count_down_backoffvalue{=sleep_mode2[1]+=ASLOTTIME-10,
energy_sender_economy_mode2[l]+=turn_on_off_const ,
energy._sender_economy_mode3[l]+=turn_on_off_const=}

:sl_enter_vulnerable_period{=energy_sender[l]4+=yx*sensing_factor ,
energy._sender_economy_mode [l]+=(y—sleep_model [1])*
sensing_factor+sleep-model[l]*idle_factor ,
energy_sender_economy_mode2[1] += (y—sleep_-mode2[1])*
sensing_factor+sleep-mode2[1l]*idle_factor ,
energy._sender_economy_mode3[1l] += (y—sleep.model[l] —sleep_-mode2[1])=x*
sensing_factor+(sleep_-model[l]+sleep-mode2[1l])*idle_factor=}

::sl_start_send {= x=0 =}

::sl_send{= energy_sender[l]+=transmitting_factorxx,
energy_sender_economy_mode[l]+=transmitting_factor=x,
energy_sender_economy_-mode2[l]+=transmitting_factor*x,
energy._sender_economy_mode3[l]+=transmitting_factorxx, x=0=}

::sl_detects_channel_busy_after_sending_and_will_resend {= z=0,
time_sender_channel_used_not_successful[l]+=sending_duration[1l] =}

::sl_ack_received_correct{=energy_sender[l]+=sensing_factorxx,
energy._sender_economy_mode[l]+=sensing_factorxx,z=0,
time_sender_send[l]+=sending_duration [1],
energy._sender_economy_mode2[l]+=sensing_factorx*x,
energy._sender_economy_mode3[l]+=sensing_factor*x=}

::sl_will_resend_message{=energy_sender[l]+=sensing_factorx*x,
energy_sender_economy_mode[l]+=sensing_factor*x,z=0,
energy-sender_economy_mode2[l]+=sensing_factor*x,
energy-sender_economy_mode3[l]+=sensing_factor*x,
time_sender_channel_used_not_successful[l]+=sending_-duration[1l]=}

::sl_will_skip_message{=energy_sender[l]+=sensing_factor=x,
energy_sender_economy_mode[l]+=sensing_factorxx,z=0,
energy_sender_economy_mode2[l]+=sensing_factor*x,
energy-sender_economy_mode3[l]+=sensing_factor*x,
time_sender_channel_used_not_successful[l]4+=sending_duration[1]=}

::s2_do_nothing{=energy_sender_economy_mode[2]+=turn_on_off_constxon_off [2],
energy._sender_economy_mode2[2]+=turn_on_off_const*xon_off [2],
energy-sender([2]+=turn_on_off_constxon_off[2],
energy._sender_economy_mode3[2]+=turn_on_off_const*xon_off [2] ,on_off[2]=0=}

::s2_reset_clock_and_counter{=x2=0,y2=0,
energy-sender([2]+=z2xidle_factor+z2xturn_on_off_const2/t_intervall ,on_off[2]=1,
energy_sender_economy_mode [2] += z2xidle_factor+z2+xturn_on_off_const2/t_intervall ,
energy_sender_economy_mode2[2] += z2xidle_factor+z2xturn_on_off_const2/t_intervall ,
energy_sender_economy_-mode3 [2] += z2xidle_factor+z2xturn_on_off_const2/t_intervall=}

::s2_freeze_backoff{=sleep_model[2]+=TRANS_TIME_MIN-ASLOTTIME,
energy-sender_economy_mode[2]+=turn_on_off_const ,
energy._sender_economy_mode3[2]+=turn_on_off_const=}

:s2_count_-down_backoffvalue{=sleep_mode2[2]+=ASLOTTIME-10,
energy_sender_economy_-mode2[2]+=turn_on_off_const ,
energy_sender_economy_mode3[2]+=turn_on_off_const=}

::s2_enter_vulnerable_period{=energy_sender([2]+=y2*sensing_factor ,
energy._sender_economy_mode[2]+=(y2—sleep_model [2])*
sensing_factor+sleep_model [2]* idle_factor ,
energy_sender_economy_mode2[2] += (y2—sleep_-mode2[2])x*
sensing_factor+sleep_-mode2[2]*idle_factor ,
energy._sender_economy_mode3[2] += (y2—sleep_-model[2] —sleep_-mode2[2])*
sensing_factor+(sleep_model [2]+sleep_-mode2[2])* idle_factor=}

::s2_start_send {= x2=0 =}

:s2_send{=energy_sender[2]+=transmitting_factor*x2,
energy_sender_economy_mode[2]+=transmitting_factor=x2,
energy_sender_economy_mode2[2]+=transmitting_factor*x2,
energy_sender_economy_-mode3[2]+=transmitting_factorxx2, x2=0 =}

::s2_detects_channel_busy_after_sending_and_will_-resend {= 2z2=0,
time_sender_channel_used_not_successful[2]+=sending_-duration[2]=}

:s2_ack_received_correct{=energy_sender[2]+=sensing_factorxx2,
energy_-sender_economy_mode[2]+=sensing_factor=*x2,z2=0,
time_sender_send[2]+=sending_-duration [2],

29

energy_sender_economy_mode2[2]+=sensing_factor*x2,
energy._sender_economy_mode3[2]+=sensing_factor*x2=}

::s2_will_resend_message{=energy_sender[2]+=sensing_factor*x2,

energy_sender_economy_mode[2]+=sensing_factor=*x2,z2=0,
energy_sender_economy_mode2[2]+=sensing_factor*x2,
energy_sender_economy_mode3[2]+=sensing_factor*x2,
time_sender_channel_used_not_successful[2]+=sending_-duration[2]=}

::s2_will_skip_message;energy_-sender[2]+=sensing_factor*x2,

energy_sender_economy_mode[2]+=sensing_factorxx2, z2=0,
energy_sender_economy_-mode2[2]+=sensing_factor*x2,
energy_sender_economy-_-mode3[2]+=sensing_factor*x2,
time_sender_channel_used_not_successful[2]+=sending_-duration[2]=}

::s3_do_nothing{=energy_sender_econmy_mode[3]+=turn_on_off_const*xon_off [3],

energy_sender_economy_mode2[3]+=turn_on_off_constxon_off [3],
energy_sender([3]+=turn_on_off_constxon_off[3],
energy._sender_economy_mode3[3]+=turn_on_off_const*xon_off [3],on_off[3]=0=}

::s3_reset_clock_and_counter{=x3=0,y3=0,

energy-sender[3]+=z3*idle_factor+z3*xturn_on_off_const2/t_intervall ,
energy_sender_economy_mode [3] += z3xidle_factor+z3*xturn_on_off_const2/t_intervall ,
energy_sender_economy_mode2[3] += z3xidle_factor4+z3*xturn_on_off_const2/t_intervall,
energy._sender_economy_mode3 [3] += z3xidle_factor+z3xturn_on_off_const2/t_intervall=}

::s3_freeze_backoff{=sleep_model[3]+=TRANS_TIME_MIN-ASLOTTIME,

energy_sender_economy_mode[3]+=turn_on_off_const ,
energy_sender_economy_mode3[3]+=turn_on_off_const=}
:s3_count_-down_backoffvalue{=sleep_mode2[3]+=ASLOTTIME-10,
energy_sender_economy-_-mode2[3]+=turn_on_off_const ,
energy_sender_economy_mode3[3]+=turn_on_off_const=}

::s3_enter_vulnerable_period{=energy_sender[3]+=y3*sensing_factor ,

energy_sender_economy_mode [3]4+=(y3—sleep_-model [3]) *
sensing_factor+sleep_-model [3]*idle_factor ,
energy._sender_economy_mode2[3] += (y3—sleep-mode2[3])=*
sensing_factor+sleep_-mode2[3]*idle_factor ,
energy._sender_economy_mode3[3] += (y3—sleep_-model[3] —sleep_-mode2[3])*
sensing_factor+(sleep_model[3]+sleep_-mode2[3])*idle_factor =}

::s3_start_send {= x3=0 =}

:s3_send{= energy_sender[3]+=transmitting_factor*x3,
energy._sender_economy_mode[3]+=transmitting_factor=x3,
energy_sender_economy_mode2[3]+=transmitting_factor*x3,
energy._sender_economy_mode3[3]+=transmitting_factor*x3,x3=0

::s3_detects_channel_busy_after_sending_-and_will_-resend ,2z3=0,

time_sender_channel_used_not_successful[3]+=sending_duration[3]=}
:s3_ack_received_correct{=energy_sender[3]+=sensing_factorxx3,
energy_sender_economy_mode[3]+=sensing_factorxx3, z3=0,
time_sender_send[3]+=sending_duration [3],
energy_sender_economy_-mode2[3]+=sensing_factor*x3,
energy_-sender_economy-_-mode3[3]+=sensing_factor*x3=}
:s3_will_resend_message{=energy_sender([3]+=sensing_factor=*x3,
energy-sender_economy_-mode[3]+=sensing_factor=*x3;z3=0,
energy_sender_economy_mode2[3]+=sensing_factor*x3,
energy_sender_economy_mode3[3]+=sensing_factor*x3,
time_sender_channel_used_not_successful[3]+=sending_duration[3]=}
:s3_will_skip_-message{=energy_sender[3]+=sensing_factorxx3,
energy._sender_economy_mode[3]4+=sensing_factorxx3, z3=0,
energy_sender_economy_mode2[3]+=sensing_factor*x3,
energy_sender_economy_mode3[3]+=sensing_factor*x3,
time_sender_channel_used_not_successful[3]+=sending_duration[3]=}

:s4_do_nothing{=energy_sender_economy_mode[4]+=turn_on_off_const*xon_off [4],
energy_sender_economy_mode2[4]+=turn_on_off_const*xon_off [4],
energy-sender[4]+=turn_on_off_constxon_off[4],
energy_sender_economy_mode3[4]+=turn_on_off_constxon_off [4],on_off[4]=0=}

::sd_reset_clock_and_counter{=x4=0,y4=0,

energy-sender([4]+=z4xidle_factor+z4xturn_on_off_const2/t_intervall;on_off[4]=1,

energy_-sender_economy_mode [4] += z4xidle_factor+z4xturn_on_off_const2/t_intervall ,
energy_sender_economy_mode2[4] += z4xidle_factor+z4*xturn_on_off_const2/t_intervall ,
energy_sender_economy_-mode3 [4] += z4xidle_factor+zdxturn_on_off_const2/t_intervall=}

::sd4_freeze_backoff{=sleep_model[4]+=TRANS_TIME_MIN-ASLOTTIME,

energy._sender_economy_mode[4]+=turn_on_off_const ,
energy._sender_economy_mode3[4]+=turn_on_off_const=}
:s4_count_down_backoffvalue{=sleep_-mode2[4]+=ASLOTTIME-10,
energy_sender_economy_mode2[4]+=turn_on_off_const ,
energy._sender_economy_mode3[4]+=turn_on_off_const=}

::sd4_enter_vulnerable_period{=energy_sender[4]+=y4d*sensing_factor ,

energy_sender_economy_mode [4]+=(y4—sleep_model [4])* sensing_factor+
sleep-model [4]xidle_factor ,
energy_sender_economy_-mode2[4] += (y4—sleep-mode2[4])=x*
sensing_factor+sleep-mode2[4]*idle_factor ,
energy_sender_economy_mode3[4] += (y4—sleep_-model[4] — sleep_-mode2[4])x*
sensing_factor+(sleep_model[4]+sleep-mode2[4])* idle_factor =}
:sd_start_send {= x4=0 =}
:s4_send{= energy_sender[4]+=transmitting_factor=*x4,
energy_sender_economy_mode[4]+=transmitting_factor=x4,

30

energy._sender_economy_mode2[4]+=transmitting_factor x4,
energy_sender_economy_mode3[4]+=transmitting_factor*x4, x4=0=}

::sd4_detects_channel_busy_after_sending_and_will_resend{=2z4=0,

time_sender_channel_used_not_successful[4]+=sending_duration[4]=}
:s4_ack_received_correct{=energy_sender[4]+=sensing_factorxx4,
energy_sender_economy_mode[4]+=sensing_factorxx4,z4=0,
time_sender_send[4]+=sending_duration [4],
energy_sender_economy_-mode2[4]+=sensing_factorx*x4,
energy_-sender_economy-_-mode3[4]+=sensing_factor*x4=}
:s4_will_resend_message{=energy_sender([4]+=sensing_factorxx4,
energy_sender_economy_-mode[4]+=sensing_factor=xx4,z4=0,
energy_sender_economy_mode2[4]+=sensing_factorx*x4,
energy_sender_economy_-mode3[4]+=sensing_factorx*x4,
time_sender_channel_used_not_successful[4]+=sending_-duration[4]=}
:s4_will_skip_-message{=energy_sender[4]+=sensing_factorxx4,
energy._sender_economy_mode[4]+=sensing_factorx*x4,z4=0,
energy_sender_economy_mode2[4]+=sensing_factorx*x4,
energy_sender_economy_mode3[4]+=sensing_factor*x4,
time_sender_channel_used_not_successful[4]+=sending_duration[4]=}

:sb_do_nothing{=energy_sender_economy_mode[5]+=turn_on_off_const*xon_off [5],
energy._sender_economy_mode2[5]+=turn_on_off_const*xon_off [5],
energy-sender([5]+=turn_on_off_constxon_off[5],
energy_sender_economy_mode3[5]+=turn_on_off_constxon_off [5],on_off[5]=0=}

::sb_reset_clock_and_counter{=x5=0,y5=0,

energy-sender([5]|+=z5*xidle_factor+z5+xturn_on_off_const2/t_intervall;on_off[5]=1,

energy_sender_economy_mode [5] += zbxidle_factor+z5+xturn_on_off_const2/t_intervall ,
energy_sender_economy_mode2[5] += z5xidle_factor+z5*xturn_on_off_const2/t_intervall,
energy_sender_economy_-mode3 [5] += z5xidle_factor+z5*xturn_on_off_const2/t_intervall=}

::sb_freeze_backoff{=sleep_model[5]+=TRANS_TIME_MIN-ASLOTTIME,

energy-sender_economy_mode[5]+=turn_on_off_const ,
energy._sender_economy_mode3[5]+=turn_on_off_const=}
:sb_count_down_backoffvalue{=sleep_-mode2[5]+=ASLOTTIME-10,
energy_sender_economy_mode2[5]+=turn_on_off_const ,
energy._sender_economy_mode3[5]+=turn_on_off_const=}

::sb_enter_vulnerable_period{=energy_sender[5]+=y5*sensing_factor ,

energy._sender_economy_mode [5]+=(y5—sleep_model [5])* sensing_factor+
sleep-model [5]xidle_factor ,

energy._sender_economy_mode2[5] += (yb—sleep_-mode2[5])x*
sensing_factor+sleep_-mode2[5]*idle_factor ,
energy._sender_economy_mode3[5] += (yb—sleep_-model[5] —sleep_-mode2[5])*
sensing_factor+(sleep_-model[5]+sleep-mode2[5])*idle_factor=}

:sb_start_send {= x5=0=}

:sb_send{= energy_sender([5]+=transmitting_factor*x5,
energy_sender_economy_mode[5]+=transmitting_factor=x5,
energy_sender_economy_mode2[5]+=transmitting_factor x5,
energy_sender_economy_mode3 [5]+=transmitting_factorxx5, x5=0=}

:sb_detects_channel_busy_after_sending_-and_will_resend{=25=0,
time_sender_channel_used_not_successful[5]+=sending_duration[5]=}

::sb_ack_received_correct{=energy_sender[5]+=sensing_factor=*x5,

energy._sender_economy_mode[5]+=sensing_factorx*x5;z5=0,
time_sender_send [5]+=sending_duration [5],
energy_sender_economy_mode2[5]+=sensing_factor*x5,
energy._sender_economy_mode3[5]+=sensing_factor*x5=}
:sb_will_-resend_message{=energy_sender([5]+=sensing_factor=*x5,
energy._sender_economy_mode[5]+=sensing_factorx*x5;z5=0,
energy_sender_economy_mode2[5]+=sensing_factor*x5,
energy_sender_economy_mode3[5]+=sensing_factor*x5,
time_sender_channel_used_not_successful[5]+=sending_duration[5]=}
:sh_will_skip_-message{=energy_sender[5]+=sensing_factorxx5,
energy_sender_economy_mode[5]+=sensing_factor x5,
z5=0;energy_sender_economy_mode2[5]+=sensing_factor x5,
energy_sender_economy_-mode3[5]+=sensing_factor*x5,
time_sender_channel_used_not_successful[5]+=sending_duration[5]=}

::s6_do_nothing{=energy_sender_economy._mode[6]+=turn_on_off_constxon_off [6],

energy_sender_economy_mode2[6]+=turn_on_off_constxon_off [6],
energy_sender[6]+=turn_on_off_constxon_off[6],
energy._sender_economy_mode3[6]+=turn_on_off_const*xon_off [6] ,on_off[6]=0=}
:s6_reset_clock_and_counter{=x6=0,y6=0,
energy-sender([6]+=z6xidle_factor+z6xturn_on_off_const2/t_intervall;on_off[6]=1,
energy_sender_economy_mode [6] += z6xidle_factor+z6xturn_on_off_const2/t_intervall ,
energy._sender_economy_mode2[6] += z6xidle_factor4+z6xturn_on_off_const2/t_intervall,
energy._sender_economy_mode3 [6] += z6xidle_factor+z6xturn_on_off_const2/t_intervall=}
:s6_freeze_backoff{=sleep_.model[6]+=TRANS_TIME_MIN—ASLOTTIME,
energy-sender_economy_mode[6]+=turn_on_off_const ,
energy_sender_economy_mode3[6]+=turn_on_off_const=}

::s6_count_-down_backoffvalue{=sleep_-mode2[6]+=ASLOTTIME—10,

energy_sender_economy-_-mode2[6]+=turn_on_off_const ,
energy_sender_economy_mode3[6]+=turn_on_off_const=}
:s6_enter_vulnerable_period{=energy_sender[6]+=y6xsensing_factor ,
energy_sender_economy_mode[6]4+=(y6—sleep_-model [6])* sensing_factor+
sleep-model [6]xidle_factor ,

31

energy._sender_economy_mode2[6] += (y6—sleep_-mode2[6])x*
sensing_factor+sleep_-mode2[6]*idle_factor ,
energy._sender_economy_mode3 [6] += (y6—sleep_-model[6] —sleep_-mode2[6])*
sensing_factor+(sleep_model [6]+sleep_-mode2[6])*idle_factor=}

:s6_start_send {= x6=0 =}

:s6_send{= energy_sender[6]+=transmitting_factor*x6,
energy_sender_economy_mode[6]+=transmitting_factor=x6,
energy_sender_economy_mode2[6]+=transmitting_factorxx6,
energy_sender_economy_mode3[6]+=transmitting_factor*x6,x6=0=}

:s6_detects_channel_busy_after_sending_-and_will_resend{=2z6=0,
time_sender_channel_used_not_successful[6]+=sending_duration [6]

::s6_ack_received_correct{=energy_sender[6]+=sensing_factor*x6,

energy_-sender_economy_-mode[6]+=sensing_factorxx6,z6=0,
time_sender_send[6]+=sending_duration [6],
energy_sender_economy_-mode2[6]+=sensing_factor*x6,
energy._sender_economy_mode3[6]+=sensing_factor*x6=}
:s6_will_-resend_message{=energy_sender[6]+=sensing_factor*x6,
energy._sender_economy_mode[6]+=sensing_factor xx6,
z6=0;energy_sender_economy_mode2[6]+=sensing_factorxx6,
energy_sender_economy_mode3[6]+=sensing_factorx6,
time_sender_channel_used_not_successful[6]+=sending_duration[6]=}
:s6_will_skip_-message{=energy_sender[6]+=sensing_factorxx6,
energy._sender_economy_mode[6]+=sensing_factor xx6,

z6 =0;energy_sender_economy_mode2[6]+=sensing_factorxx6,
energy_sender_economy_-mode3 [6]+=sensing_factor*x6,
time_sender_channel_used_not_successful[6]+=sending_duration[6]=}

::use_of_channel_detected{= time_channel_not_used+=timerl ,timerl=0=}
::channel_corrupted{= time_channel_not_used4+=timerl=}

:channel_ready_after_corrupted{=timer1=0=}

:collision_detected{=coll=1,timer_coll=

:channel_is_free{=time_in_coll4=coll*timer_coll , coll =0,
time_channel_used4=timerl , timer1=0=}

::when (global_time==simulation_duration)time_channel_used4+=(1.0—c.free)xtimerl;

time_channel_not_used+=c. freextimerl;timerl=0;time_in_coll+=collxtimer_coll;
energy_sender[l]+=is_sending[1l]* transmitting_factor*x +
(1—is_sending[1])* sensing_factor*(vuln_reached [1]*x+
((1—vuln_reached [1])* msg_to_send [1]xy))+(1—msg_to_send[1])*zxidle_factor;
energy._sender_economy_mode[l]+=is_sending [1]* transmitting_factorxx +
(1—is_sending[1])* sensing_factor*(vuln_reached [1]x*x+
((1—vuln_reached [1])* msg_to_send [1]* (y—sleep_-model[1]))) +

(l1-msg_to_send [1])*xzxidle_factor ;
energy._sender_economy_mode2[l]+=is_sending [l]* transmitting_factor*x +
(1—is_sending[1l])* sensing_factor*(vuln_reached [1]x*x+
((1—vuln_reached [1])* msg_to_send [1]* (y—sleep_-mode2[1]))) +
(1—msg-to_send [1])*zxidle_factor;
energy._sender_economy_mode3[l]+=is_sending [l]* transmitting_factor*x +
(1—is_sending[1l])* sensing_factor*(vuln_reached [1]x*x+
((1—vuln_reached [1])* msg_to_send [1]* (y—sleep_model[1l] —sleep_mode2[1])))
+ (l1—msg_to_send [1])*xzxidle_factor;

energy-_sender [2]+=is_sending [2]* transmitting_factor*x2 +

(1—is_sending [2])* sensing_factor*(vuln_reached [2] % x2+

((1—vuln_reached [2])* msg_to_send [2]xy2))4+(1—msg_to_send [2])*z2xidle_factor;
energy._sender_economy_mode[2]+=is_sending [2]* transmitting_factor*x2 +
(1—is_sending [2])* sensing_factor*(vuln_reached [2] % x2+

((1—vuln_reached [2])* msg_to_send [2] % (y2—sleep_model [2])))

+ (1—msg_-to_send [2])*z2xidle_factor ;
energy._sender_economy_-mode2[2]+=is_sending [2]* transmitting_factor*x2 +
(1—is_sending [2])* sensing_factor*(vuln_reached [2] % x2+

((1—vuln_reached [2])* msg_to_send [2] % (y2—sleep_mode2[2])))

+ (1—msg_-to_send [2])*z2xidle_factor ;
energy._sender_economy_-mode3[2]+=is_sending [2]* transmitting_factor*x2 +
(1—is_sending [2])* sensing_factor*(vuln_reached [2] % x2+

((1—vuln_reached [2])* msg_to_send [2] % (y2—sleep_model[2] —sleep-mode2[2])))
+ (1—msg_-to_send [2])*z2xidle_factor ;

energy_sender [3]+=is_sending [3]* transmitting_factor*x3 +

(1—is_sending [3])* sensing_factor*(vuln_reached [3]*x3+

((1—vuln_reached [3])* msg_to_send [3]*y3))+(1l—msg_to_send [3])*z3*xidle_factor;
energy._sender_economy_mode[3]+=is_sending [3]* transmitting_factor*x3 +
(1—is_sending [3])* sensing_factor*(vuln_reached [3]*x3+

((1—vuln_reached [3])* msg_to_send [3]* (y3—sleep_model [3])))

+ (l1—msg_to_send [3])*z3*xidle_factor;
energy._sender_economy_-mode2[3]+=is_sending [3]* transmitting_factor*x3 +
(1—is_sending [3])* sensing_factor*(vuln_reached [3]*x3+

((1—vuln_reached [3])* msg_to_send [3]*(y3—sleep_mode2[3])))

+ (l1—msg_-to_send [3])*z3xidle_factor ;
energy._sender_economy_-mode3[3]+=is_sending [3]* transmitting_factor*x3 +
(1—is_sending [3])* sensing_factor*(vuln_reached [3]*x3+

((1—vuln_reached [3])* msg_to_send [3]* (y3—sleep_model[3] —sleep-mode2[3])))
+ (l1—msg_-to_send [3])*z3*idle_factor ;

32

par{

energy-_sender [4]+=is_sending [4]* transmitting_factor*x4 +

(1—is_sending [4])* sensing_factor*(vuln_reached [4]* x4+

((1—vuln_reached [4])* msg_to_send [4]xy4))+(1—msg_to_send [4])*z4dxidle_factor;
energy._sender_economy_mode[4]+=is_sending [4]* transmitting_factor*x4 +
(1—is_sending [4])* sensing_factor*(vuln_reached [4] % x4+

((1—vuln_reached [4])* msg_to_send [4] * (y4—sleep_model [4]))) +
(1—msg-to_send [4])*z4xidle_factor ;
energy._sender_economy_-mode2[4]+=is_sending [4]* transmitting_factor*x4 +
(1—is_sending [4])* sensing_factor*(vuln_reached [4] % x4+

((1—vuln_reached [4])* msg_to_send [4] * (yd—sleep_mode2[4])))

+ (1—msg_-to_send [4])*xzdxidle_factor ;
energy._sender_economy_-mode3[4]+=is_sending [4]* transmitting_factor*x4 +
(1—is_sending [4])* sensing_factor*(vuln_reached [4] % x4+

((1—vuln_reached [4])* msg_to_send [4] % (y4d—sleep_model[4] —sleep-mode2[4])))
+ (l1—msg_to_send [4])*xzd4xidle_factor;

energy-sender [5]+=is_sending [5]* transmitting_factor*x5 +

(1—is_sending [5])* sensing_factor*(vuln_reached [5]* x5+

((1—vuln_reached [5])* msg_to_send [5]*xy5))+(1—msg_to_send [5])*z5*xidle_factor;
energy._sender_economy_mode[5]+=is_sending [5]* transmitting_factor*x5 +
(1—is_sending [5])* sensing_factor*(vuln_reached [5]* x5+

((1—vuln_reached [5])* msg_to_send [5] % (y5—sleep_model [5])))

+ (l1—msg_-to_send [5])*z5*idle_factor ;
energy._sender_economy_-mode2[5]+=is_sending [5]* transmitting_factor=*x5 +
(1—is_sending [5])* sensing_factor*(vuln_reached [5] % x5+

((1—vuln_reached [5])* msg_to_send [5]* (y5—sleep_-mode2[5])))

+ (l1—msg_-to_send [5])*z5*idle_factor ;
energy._sender_economy_-mode3[5]+=is_sending [5]* transmitting_factor=*x5 +
(1—is_sending [5])* sensing_factor*(vuln_reached [5] % x5+

((1—vuln_reached [5])* msg_to_send [5]* (y5—sleep_model[5] —sleep-mode2[5])))
+ (l1—msg_-to_send [5])*z5*idle_factor ;

energy_sender [6]+=is_sending [6]* transmitting_factor*x6 +

(1—is_sending [6])* sensing_factor*(vuln_reached [6] % x6+

((1—vuln_reached [6])* msg_to_send [6]*xy6))+(1—msg_to_send [6])*z6xidle_factor;
energy._sender_economy_mode[6]+=is_sending [6]* transmitting_factor*x6 +
(1—is_sending [6])* sensing_factor*(vuln_reached [6] * x6+

((1—vuln_reached [6])* msg_to_send [6] % (y6—sleep_model [6])))

+ (l1—msg_to_send [6])*z6xidle_factor;
energy._sender_economy_mode2[6]+=is_sending [6]* transmitting_factor*x6 +
(1—is_sending [6])* sensing_factor*(vuln_reached [6] % x6+

((1—vuln_reached [6])* msg_to_send [6]* (y6—sleep_-mode2[6])))

+ (l1—-msg_-to_send [6])*z6xidle_factor ;

energy._sender_economy_-mode3 [6]+=is_sending [6]* transmitting_factor*x6 +
(1—is_sending [6])* sensing_factor*(vuln_reached [6] * x6+

((1—vuln_reached [6])* msg_to_send [6]* (y6—sleep_model[6] —sleep-mode2[6])))
+ (l1—msg_-to_send [6])*z6xidle_factor ;

when (timerl==1) tau

relabel {

enable_backoff ,start_-wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send,exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do-nothing ,
will_resend_message ,ack_received_correct ,waited_DIFS_backoff ,
enter_vulnerable_period ,will_skip_message ,
detects_channel_busy_after_sending_-and_will_resend }

by

sl_enable_backoff ,sl_start_wait_-for_ack ,sl_reset_clock_and_counter ,
sl_choose_-backoffvalue ,sl_continue_backoff ,sl_count-down_backoffvalue ,
sl_freeze_backoff ,sl_start_-send ,sl_send,sl_exit-backoff ,
sl_deals_with_backoff ,sl_reset_sense_in_backoff ,sl_do_-nothing,
sl_will_resend_-message ,sl_ack_received_correct ,sl_waited_DIFS_backoff ,
sl_enter_vulnerable_period ,sl_will_skip_-message ,
sl_detects_channel_busy_after_sending_and_will_resend}

sender (1,loadl ,active_senders)

relabel{

enable_backoff ,start_wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count-down_backoffvalue ,
freeze_backoff ,start_send ,send, exit-backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do-nothing ,
will_resend_message ,ack_received_correct ,waited_DIFS_backoff ,
enter_vulnerable_period ,will_skip_message ,
detects_channel_busy_after_sending_-and_-will_resend }

by

{

33

s2_enable_backoff ,s2_start_wait_for_ack ,s2_reset_clock_and_counter ,
s2_choose_backoffvalue ,s2_continue_backoff ,s2_count_down_backoffvalue ,
s2_freeze_backoff ;s2_start_.send ,s2_send ,s2_exit_backoff ,
s2_deals_with_backoff ,s2_reset_sense_in_backoff ,s2_do_nothing,
s2_will_resend_message ,s2_ack_received_correct ,s2_waited_DIFS_backoff ,
s2_enter_vulnerable_period ,s2_will_skip_-message ,
s2_detects_channel_busy_after_sending_-and_will_resend}

sender (2,loadl ,active_senders)

relabel {

enable_backoff ,start_wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send, exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do_nothing ,
will_resend_message ,ack_received_correct ,waited_DIFS_backoff ,
enter_vulnerable_period , will_skip_message ,
detects_channel_busy_after_sending_and_will_resend }

by

s3_-enable_backoff ,s3_start_wait_for_ack ,s3_reset_clock_and_counter ,
s3_.choose_backoffvalue ,s3_continue_backoff ,s3_count_down_backoffvalue ,
s3_freeze_backoff ,s3_start_.send ,s3_send ,s3_exit_backoff ,
s3_deals_with_backoff ,s3_reset_sense_in_backoff ,s3_do_nothing,
s3_will_resend_message ,s3_ack_received_correct ,s3_waited_DIFS_backoff ,
s3_enter_vulnerable_period ,s3_will_skip_message ,
s3_detects_channel_busy_after_sending_-and_will_resend}

sender (3 ,loadl ,active_senders)

relabel {

enable_backoff ,start_-wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send, exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do_nothing ,
will_-resend_message ,ack_received_correct ,waited_DIFS_backoff,
enter_vulnerable_period , will_skip_message ,
detects_channel_busy_after_sending_and_will_resend }

by

s4_enable_backoff ,sd4_start_wait_for_ack ,s4_reset_clock_and_counter ,
sd4d_choose_backoffvalue ,s4_continue_backoff ,s4_count_down_backoffvalue ,
s4_freeze_backoff ,s4_start_send ,sd4_send ,sd_exit_backoff ,
s4d_deals_with_backoff ,s4_reset_sense_in_backoff ,s4_do_nothing,
s4_will_resend_message ,s4_ack_received_correct ,s4_waited_DIFS_backoff ,
sd_enter_vulnerable_period ,s4_will_skip_message ,
s4_detects_channel_busy_after_sending_-and_will_resend}

sender (4,loadl ,active_senders)

relabel {

enable_backoff ,start_-wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send,exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do_nothing ,
will_-resend_message ,ack_received_correct ,waited_DIFS_backoff,
enter_vulnerable_period , will_skip_message ,
detects_channel_busy_after_sending_and_will_resend }

by

sb_enable_backoff ,s5_start_wait_-for_ack ,sb_reset_clock_and_counter ,
sb_choose_backoffvalue ,s5_continue_backoff ,s5_count_down_backoffvalue ,
sb_freeze_backoff ,sb_start_send ,s5_send ,sb5_exit_backoff ,
sb_deals_with_backoff ,s5_reset_sense_in_backoff ,s5_do_nothing,
sb_will_resend_message ,sb5_ack_received_correct ,sb_waited_DIFS_backoff ,
sb_enter_vulnerable_period ,s5_will_skip_message ,
sb_detects_channel_busy_after_sending_and_will_resend}

sender (5,loadl ,active_senders)

relabel {

enable_backoff ,start_wait_for_ack ,reset_clock_and_counter ,
choose_backoffvalue ,continuebackoff,count_.down_backoffvalue ,
freeze_backoff ,start_send ,send,exit_backoff ,
deals_with_backoff ,reset_sense_in_backoff ,do_nothing ,
will_-resend_message ,ack_received_correct ,waited_DIFS_backoff,
enter_vulnerable_period , will_skip_message ,
detects_channel_busy_after_sending_and_will_resend }

by

s6_enable_backoff ,s6_start_wait_for_ack ,s6_reset_clock_and_counter ,
s6_choose_backoffvalue ,s6_continue_backoff ,s6_count_down_backoffvalue ,
s6_freeze_backoff ,s6_start_send ,s6_send ,s6_exit_backoff ,
s6_deals_with_backoff ,s6_reset_sense_in_backoff ,s6_do_nothing,
s6_will_resend_message ,s6_ack_received_correct ,s6_waited_DIFS_backoff ,
s6_enter_vulnerable_period ,s6_will_skip_message ,
s6_detects_channel_busy_after_sending_-and_will_resend}

34

sender (6,loadl ,active_senders)

relabel{receive ,start_send_ack ,send_ack} by
{rl_receive ,rl_start_send_ack ,rl_send_ack} receiver(—1)

relabel{receive ,start_send_ack ,send_ack} by
{r2_receive ,r2_start_send_ack ,r2_send_ack} receiver(—2)

relabel{receive ,start_send_ack ,send_ack} by
{r3_receive ,r3_start_send.ack ,r3_send_ack} receiver(—3)

relabel{receive ,start_send_ack ,send_ack} by
{r4_receive ,r4_start_send_ack ,r4_send_ack} receiver(—4)
relabel{receive ,start_send_ack ,send_ack} by

{r5_receive ,r5_start_send_ack ,r5_send_ack} receiver(—5)

relabel{receive ,start_send_ack ,send_ack} by
{r6_receive ,r6_start_send_ack ,r6_send_ack} receiver(—6)

chan ()
monitor ()

35

