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Part I

A brief introduction to probability theory
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Characteristics

I Quantitative description of trials with random outcome.

I Arbitrary number of trials under the same conditions.

I Events related to outcomes.

I Different events occur with different frequentness.
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Fundamental Terms

I Sample space.
I Collection of elementary events.
I Notation: Ω.

I Set of events.
I Collection of sets of elementary events.
I Notation: E ⊆ 2Ω.

I Probability function.
I Mapping from E to [0, 1].
I Notation: Pr : 2Ω → [0, 1].
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Probability Function

I 0 ≤ Pr[e] ≤ 1, e ∈ E .

I Pr[Ω] = 1.

I e1, e2, . . . events with ei ∩ ej = ∅ for all i , j :

Pr

[⋃
i

ei

]
=

∑
i

Pr[ei ] .
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Probability Space

I (Ω,E ,Pr).

I Sample space Ω.

I Set of events E . σ-algebra E on Ω.
I ∅ ∈ E .
I A ∈ E ⇒ AC ∈ E .
I A1,A2, · · · ∈ E ⇒

⋃
i Ai ∈ E .

I Probability function Pr on E .
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Example

Rolling a fair die.

I Ω = {1, 2, 3, 4, 5, 6}.
I E = 2Ω.

I Pr[{e}] = 1
6 , e ∈ Ω.

I Probability of rolling an even number Pr[{2, 4, 6}] = 1
2 .

I e0: rolling an even number, e1: rolling at least 3.
I Pr[e0 ∪ e1] = Pr[e0] + Pr[e1]− Pr[e0 ∩ e1] = 1

2 + 2
3 −

1
3 = 5

6 .
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Conditional Probability

I Probability of e1 given that e0 holds.

I Notation: Pr[e1|e0] = Pr[e1∩e0]
Pr[e0]

.

I Elementary events of e0 induces a sample space.

I Probability of event e1 ∩ e0 given the induced sample space.

I Often used to calculate probabilities. [Law of total probability,
Bayes’ Rule.]
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Example

Probability that a student at the University of Saarbrücken studies
computer science.

I e0: human being is a student at the University of Saarbrücken.

I e1: human being studies computer science.

OR

I e0: student is a student at the University of Saarbrücken.

I e1: student studies computer science.
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Stochastic Independence

I Occurence of e0 no impact on e1.

I Pr[e1|e0] = Pr[e1] = Pr[e1∩e0]
Pr[e0]

.

I e0 and e1 stochastically independent iff

Pr[e0 ∩ e1] = Pr[e0] · Pr[e1] .

I e0, e1, . . . en stochastically independent iff

Pr[e0 ∩ e1 ∩ · · · ∩ en] = Pr[e0] · Pr[e1] · · · · · Pr[en] .

I Mutual exclusive events not stochastically independent.
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Example
Pairwise independent but not independent.

Tossing two fair coins in a row.

I e0: first coin head, Pr[e0] = 1
2 .

I e1: second coin tail, Pr[e1] = 1
2 .

I e2: both coins show same result, Pr[e2] = 1
2 .

I Pairwise independent.

Pr[e0 ∩ e1] = 1
4 = Pr[e0] · Pr[e1] ,

Pr[e0 ∩ e2] = 1
4 = Pr[e0] · Pr[e2] ,

Pr[e1 ∩ e2] = 1
4 = Pr[e1] · Pr[e2] .

I Not independent.

Pr[e0 ∩ e1 ∩ e2] = 0 6= Pr[e0] · Pr[e1] · Pr[e2] =
1

8
.
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Motivation and Definition

I Sample space without numbers.

I Interessting outcome function on events.

I X : Ω → R.

I Example: toin cossing.
Pr[head ] = p, X number of tosses until head:
Pr[X = n] = (1− p)n−1 · p.
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Discrete Random Variables

I Mapping to N.

I Probability distribution function, cumulative density function:
Pr[X ≤ n] = FX (n).

I Probability density function, probability mass function:
Pr[X = n] = fX (n).

I FX (n) =
∑n

i=0 fX (i).

I
∑

i fX (i) = 1.
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Continuous Random Variables

I Mapping to R.

I Probability of particular x is 0.

I Probability distribution function, cumulative density function:
FX (x) = Pr[X ≤ x ].

I If probability density function exists fX (x) = dFX (x)
dx .

I FX (x) =
∫ x
−∞ fx(u)du.

I
∫∞
−∞ fx(u)du = 1.

Holger Hermanns, Sven Johr:

Ad-hoc Networking – Models and Methods

Probability spaces and measures Conditional probabilities and Stochastic Independence Random Variables Distributions Problems

Examples

Discrete random variables.

I Number of failures of a computer system per minute.

I Sum of outcomes of (two) dices.

I . . .

Continuous random variables.

I Duration until two mobile devices get connected.

I Exact position of mobile devices.

I . . .
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Moments

I First moment called mean or expected value: µ, E [X ].

E [N] =
∞∑
i=0

i · fN(i),E [X ] =

∫ ∞

−∞
x · fX (x)dx .

I Rolling a die. E [N] = 3.5.

I kth moment, (k = 1, 2, . . . ):

E [Nk ] =
∞∑
i=0

ik · fN(i),E [X k ] =

∫ ∞

−∞
xk · fX (x)dx .
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Central Moments

I Second central moment called variance: σ2
X , var[X ].

E [(X − E [X ])2] .

I Rolling a die. var[N] = 2, 9167.

I kth central moment, (k = 1, 2, . . . ):

E [(X − E [X ])k ] .
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Multiple Random Variables

I Joint probability distribution function:
FX1,X2,...,Xn(x1, x2, . . . , xn) =
Pr[X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn].

I Joint probability density function:
fX1,X2,...,Xn(x1, x2, . . . , xn) =
Pr[X1 = x1,X2 = x2, . . . ,Xn = xn].

I Relation
I FX1,X2,...,Xn(x1, x2, . . . , xn) =∑

i1≤x1

∑
i2≤x2

· · ·
∑

in≤xn
fX1,X2,...,Xn(i1, i2, . . . , in).

I FX1,X2,...,Xn(x1, x2, . . . , xn) =∫ x1

−∞
∫ x2

−∞ . . .
∫ xn

−∞ fX1,X2,...,Xn(i1, i2, . . . , in)di1di2 . . . din.
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Multiple Random Variables Cont’d

I Conditional probability density function:

fX1|X0
(x1|x0) =

fX1,X0
(x1,x0)

fX0
(x0)

.

I Independence: fX1,X0(x1, x0) = fX1(x1) · fX0(x0).
I With marginal probability density

fX0(x0) =
∞∑
i=0

fX1,X0(i , x0) ,

fX0(x0) =

∫ ∞

−∞
fX1,X0(i , x0)di .

I Both apply to cumulative density function.
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Convolution

I Sum of two independent random variables determined by
convolution.

I Probability density function:
fX0+X1(z) =

∑∞
u=0 fX0(u) · fX1(z − u) ,

fX0+X1(z) =
∫∞
−∞ fX0(u) · fX1(z − u)du .

I Probability distribution function:
FX0+X1(z) =

∑∞
u=0 fX0(u) · FX1(z − u) ,

FX0+X1(z) =
∫∞
−∞ fX0(u) · FX1(z − u)du .
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Discrete Case

Finite Support

Degenerate distribution.

I X takes value x0.

I fX (x) = 1 iff x = x0.
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Discrete Case

Finite Support Cont’d

Uniform distribution.

I Elements of finite set S = {x1, x2, . . . , xn} are equally likely.

I fX (xi ) = 1
n .
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Discrete Case

Finite Support Cont’d

Bernoulli distribution.

I Value 1 probability p, value 0 probability 1− p.

I fX (x) =

{
p if x = 1,

1− p if x = 0.
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Discrete Case

Finite Support Cont’d

Binomial distribution.

I Number of successes in n independent Bernoulli experiments.

I fX (k) =
(n
k

)
pk(1− p)n−k , k = 0, 1, . . . , n.
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Discrete Case

Infinte Support

Geometric distribution.

I Number of Bernoulli trials until one success.

I fX (n) = (1− p)n−1p, n = 1, 2, . . . .
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Discrete Case

Infinte Support Cont’d

Poisson distribution.

I Number of events occuring during time t.

I fX (k) = e−λ λk

k! .
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Continuous Case

(Semi) Finite Interval
Uniform distribution.

I fX (x) =

{
1

b−a for a ≤ x ≤ b,

0 otherwise.

I FX (x) =


0 for x < a,
x−a
b−a for a ≤ x < b,

1 for x ≥ b.
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Continuous Case

(Semi) Finite Interval Cont’d

Exponential distribution.

I Time between two consecutive events.

I fX (x) = λe−λx .

I FX (x) = 1− e−λx .

Holger Hermanns, Sven Johr:

Ad-hoc Networking – Models and Methods



Probability spaces and measures Conditional probabilities and Stochastic Independence Random Variables Distributions Problems

Continuous Case

(Semi) Finite Interval Cont’d

Erlang-n distribution.

I Sum of n exponential distributions (independent, identical).

I fX (x) = λ(λx)n−1e−λx

(n−1)! for x > 0.

I FX (x) = 1− e−λx
∑n−1

i=0
(λx)i

i! for x > 0.
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Continuous Case

(Semi) Finite Interval Cont’d

Hypoexponential distribution.

I Generalization of Erlang.

I Exponential variables with different parameters.

Hyperexponential distribution.

I Choice between two (or more) exponentially distributed
variables.
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Continuous Case

Complete Reals

Normal distribution.

I fX (x) = 1√
2πσ2

e−(x−µ)2/2σ2
.

I Transformation to standard normal.
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Insecure Connections

Suppose two mobile devices try to connected at a time.

I 2% of all connections are on average insecure.

I During a detection phase
I with 94% probability an insecure connection is detected as

insecure,
I with 97% probability a secure connection is detected to be

secure.

I Suppose a connection is detected to be insecure. What is the
probability that this connection is indeed insecure?

Hint: Use Bayes’ Rule: Pr[Ai |B] = Pr[B|Ai ] Pr[Ai ]P
j Pr[B|Aj ] Pr[Aj ]
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σ-Algebra

I X is the set of natural numbers N.

I A is a set of subsets of X containing set A iff
I either A is finite,
I or AC is finite.

I Prove or disprove that A is a σ-algebra.
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