#### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

### Markov Analysis of the PRMA Protocol for Local Wireless Networks

Francesco Lo Presti & Vincenzo Grassi, Dipartimento di informatica, Sistemi e Produzione Universita di Roma

AdHoc Networking 552004 - Models and Methods

### Frank Werner

# Motivation

### AdHoc Networking

#### Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

 Interest of mobile tools for personal computing and communication

• Efficient handling of real-time and non-real-time traffic

- Limitations in the available radio spectrum (little up to no central coordination)
- Micro cellular networks meet these conditions due to higher frequency reuse but in turn increase the complexity of these systems

### Overview

### AdHoc Networking



- Overview
  - Introduction
- The Packet Reservation Multiple Access Protocol
- The Voice Model
- The PRMA Model
- Packet Dropping Analysis
- Stability Analysis
- Numerical Examples
- Conclusion

- Introduction
- The Packet Reservation Multiple Access Protocol
- The Voice Model
- The PRMA Model
- (Packet Dropping Analysis)
- Stability Analysis
- Numerical Examples

# Introduction

### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

- PRMA Packet Reservation Multiple Access
- Contention-based channel access protocol for wireless communication
- Transmitting packetized information over a shared channel

## The PRMA Protocol

### AdHoc Networking

#### Motivation

Overview

Introduction

 The Packet Reservation Multiple Access
 Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

- Is slotted like the R-ALOHA (reservation-ALOHA), slots are grouped into frames
- Designed for wireless micro cellular networks
- Can handle real-time and non-real-time traffic

# Focus here: real-time traffic

# The PRMA Protocol

### AdHoc Networking

#### Motivation

Overview

Introduction

 The Packet Reservation Multiple Access
 Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

- Terminals either send packets during talkspurts or sleep during silent periods
- As soon the talkspurt starts, it contends with other terminals for unreserved slot
- A contending terminals transmits a packet, if is obtains permission
- Permissions occur with fixed probility at each unreserved time slot, independently at each terminal

## The PRMA Protocol

### AdHoc Networking

- Motivation
- Overview
- Introduction
- The Packet Reservation Multiple Access
   Protocol
- The Voice Model
- The PRMA Model
- Packet Dropping Analysis
- Stability Analysis
- Numerical Examples
- Conclusion

- If two or more contending terminals attempt to send in the same unreserved slot, collision occurs (retransmission)
- Packets delayed beyond D<sub>max</sub> are dropped by terminals
- If a talk spurt ends before a reservation has been obtained, all remaining packets in the buffer are dropped

# The Voice Model

### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

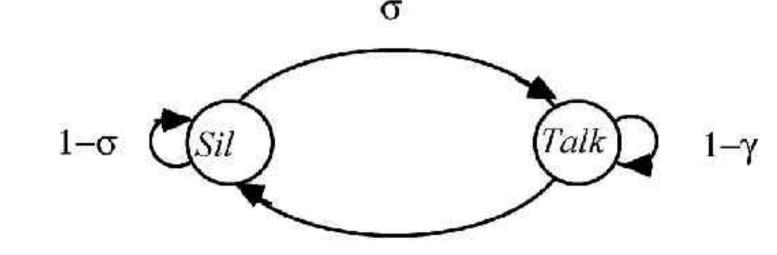
Stability Analysis

Numerical Examples

Conclusion

 Model for voice source is provided by 2 state Markov process:

- exp distributed talking (active)


- exp distributed silence (idle)
- t<sub>1</sub> mean length of talking
- $t_2$  mean length of silence
- $\tau$  slot duration

# The Voice Model

### AdHoc Networking

| <ul> <li>γ = Pr{talkspu</li> </ul> | rt ends with mean $t_1$ = | $1 - exp(-\tau/t_1)$ |
|------------------------------------|---------------------------|----------------------|
|------------------------------------|---------------------------|----------------------|

- $\sigma = \Pr\{\text{silence ends with mean } t_2\} = 1 \exp(-\tau/t_2)$
- Talking periods are geom. distributed with mean  $1/\gamma$
- Silence periods are geom. distributed with mean  $1/\sigma$



9 / 31

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

## The Voice Model

AdHoc Networking

| Motivation                                            |  |
|-------------------------------------------------------|--|
| Overview                                              |  |
| Introduction                                          |  |
| The Packet Reservation<br>Multiple Access<br>Protocol |  |
| The Voice Model                                       |  |
| The PRMA Model                                        |  |
| Packet Dropping<br>Analysis                           |  |
| Stability Analysis                                    |  |
| Numerical Examples                                    |  |
| Conclusion                                            |  |

 Fraction of time spend in each of the states is thus

$$\label{eq:sil} \begin{aligned} \pi_{\rm Sil} = & \frac{\gamma}{\sigma + \gamma} \\ \text{and} \end{aligned}$$

$$\pi_{\text{Talk}} = \frac{\sigma}{\sigma + \gamma}$$

### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

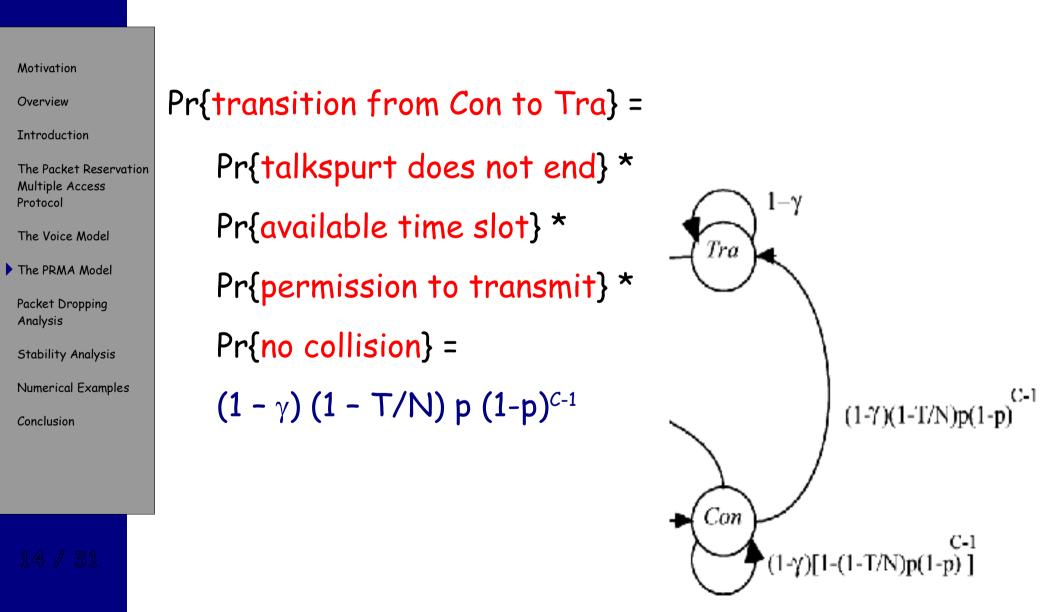
- M homogeneous independent voice terminals
- N number of slots per frame
- p permission to send probability (constant and equal for all terminals)

### AdHoc Networking

| Motivation                                            | Each terminal is always in on the following states: |  |
|-------------------------------------------------------|-----------------------------------------------------|--|
| Overview<br>Introduction                              | • Sil silent state                                  |  |
| The Packet Reservation<br>Multiple Access<br>Protocol | • Con contending state                              |  |
| The Voice Model                                       | • Tra transmission state $\int 1-\gamma$            |  |
| The PRMA Model                                        | Tra                                                 |  |
| Packet Dropping<br>Analysis                           |                                                     |  |
| Stability Analysis                                    |                                                     |  |
| Numerical Examples                                    |                                                     |  |
| Conclusion                                            | (Sil) (1-7)(1-T/N)p(1-p) (1-7)                      |  |
|                                                       | $1-\sigma$                                          |  |
| 12 / 31                                               | σ<br>(1-γ)[1-(1-T/N)p(1-p)]                         |  |

### AdHoc Networking

#### Motivation


- Overview
- Introduction
- The Packet Reservation Multiple Access Protocol
- The Voice Model
- The PRMA Model
  - Packet Dropping Analysis
- Stability Analysis
- Numerical Examples
- Conclusion

- Pr{talkspurt does not end} =  $(1 \gamma)$
- Pr{permission to transmit} = p
- $Pr\{no \ collision\} = (1-p)^{C-1}$  (C contending terminals)
- For simplicity: Probability of an available time slot is given by the fraction of free time slots

T denotes number of terminals currently in transmission:

 $Pr{available time slot} = (N-T)/N = 1 - T/N$ 

### AdHoc Networking



AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

Model of the PRMA voice system as a discrete time Markov process

$$X = \{ X_n = (S_n, C_n, T_n) \mid n \ge 0 \}$$

#### with state space

 $\Omega = \{ (s,c,t) | s,c,t \ge 0, s \le M, t \le N, c = M-t-s \}$ 

and transition probability matrix P. Number of states in  $\Omega$  is

(N + 1)(M - N/2 + 1)

### AdHoc Networking

#### Motivation

Overview

Introduction

| The Packet Reservation |
|------------------------|
| Multiple Access        |
| Protocol               |

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

#### Pr{i transmitting terminals exit to silent state}

$$= \begin{pmatrix} \mathbf{t} \\ \mathbf{i} \end{pmatrix} \boldsymbol{\gamma}^{\mathbf{i}} (\mathbf{1} - \boldsymbol{\gamma})^{\mathbf{t} - \mathbf{i}}$$
(1)

Pr{j silent terminals begin to contend}

$$= \begin{pmatrix} \mathbf{s} \\ \mathbf{j} \end{pmatrix} \sigma^{\mathbf{j}} (\mathbf{1} - \sigma)^{\mathbf{s} - \mathbf{j}}$$
(2)

#### AdHoc Networking

#### Motivation

- Overview
- Introduction
- The Packet Reservation Multiple Access Protocol
- The Voice Model
- The PRMA Model
- Packet Dropping Analysis
- Stability Analysis
- Numerical Examples
- Conclusion

 Pr{k contending terminals return to silent state and h terminals get a reservation and begin transmission} =

$$\binom{c}{k} \gamma (1-\gamma)^{c-k} x \begin{cases} 1-(1-\frac{t}{N})(c-k)p(1-p)^{c-k-1}, h=0\\ (1-\frac{t}{N})(c-k)p(1-p)^{c-k-1}, h=1 \end{cases}$$
(3)

#### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

18 / 31

Entries of one-step probability matrix P with (1), (2), (3) are

$$\Pr\{X_{n+1} = (s',c',t') \mid x_n = (s,c,t)\} =$$

$$\sum_{\substack{s+i-j+k=s'\\c+j-k-h=c'\\t-i+h=t'}} \alpha_{ijkh} \text{ with } \alpha_{ijkh} =$$

Pr {i transmitting terminals to exit to silent state} x Pr{j silent terminals begin to content} x

Pr{k contending terminals return to silent state and h terminals get a reservation and begin transmission} Markov analysis of the PRMA protocol for local wireless networks

### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

• stationary probability distribution:  $\pi \!=\! [\pi_{({\bf s},{\bf c},{\bf t})}]({\bf s},{\bf c},{\bf t}) \!\in\! \! \Omega$ 

 From the stationary distribution vector π the stationary distribution of the system variables
 S, C and T (number of terminals in each of the states) can be computed.

#### AdHoc Networking

 $n(k) - Pr\{S-k\} -$ 

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

Conclusion

for k=0, ..., M

Markov analysis of the PRMA protocol for local wireless networks

T

Stationary distribution of the system variables S, C and T (number of terminals in each of the states)

$$\mathbf{p}_{s}(\mathbf{k}) = \Pr\{\mathbf{C} = \mathbf{k}\} = \sum_{(s,c,t) \in \Omega, c=k} \pi_{(s,c,t)}$$
$$\mathbf{p}_{c}(\mathbf{k}) = \Pr\{\mathbf{C} = \mathbf{k}\} = \sum_{(s,c,t) \in \Omega, c=k} \pi_{(s,c,t)}$$
$$\mathbf{p}_{T}(\mathbf{k}) = \Pr\{\mathbf{T} = \mathbf{k}\} = \sum_{(s,c,t) \in \Omega, t=k} \pi_{(s,c,t)}$$

### AdHoc Networking

|                                                       | Expected values:                                                                             |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Motivation                                            |                                                                                              |
| Overview                                              | M                                                                                            |
| Introduction                                          | $E[S] = \sum kp_{s}(k)$                                                                      |
| The Packet Reservation<br>Multiple Access<br>Protocol | k=0                                                                                          |
| The Voice Model                                       | Μ                                                                                            |
| The PRMA Model                                        | $\mathbf{E}[\mathbf{C}] = \mathbf{\nabla} \mathbf{I}_{\mathbf{C}} (\mathbf{I}_{\mathbf{C}})$ |
| Packet Dropping<br>Analysis                           | $E[\mathcal{C}] = \sum kp_{\mathcal{C}}(k)$                                                  |
|                                                       | k=0                                                                                          |
| Stability Analysis<br>Numerical Examples              | Throughput: average number of transmitted                                                    |
| Conclusion                                            |                                                                                              |
|                                                       | packets per frame N                                                                          |
|                                                       | $E[T] = \sum kp_{T}(k)$                                                                      |
| 21 / 31                                               | k=0                                                                                          |
|                                                       | Markov analysis of the PRMA protocol for local wireless networks                             |

# Throughput, Utilization, Access Delay

### AdHoc Networking

Motivati

Overview

Introduc

The Pacl Multiple Protocol

The Voic

The PRN

Packet D Analysis

Stability

Numeric

Conclusio

| tion                         | <ul> <li>Utilization: fraction of slots per frame used to<br/>transmit packate</li> </ul>           |
|------------------------------|-----------------------------------------------------------------------------------------------------|
| ew<br>uction                 | transmit packets $E[T]/N$                                                                           |
| cket Reservatio              |                                                                                                     |
| e Access<br>bl<br>ice Model  | • Using Little's Law : $E[W] = E[N_q]/\lambda$                                                      |
| MA Model<br>Dropping<br>s    | Avg waiting time Avg arrivals per time unit                                                         |
| ty Analysis<br>ical Examples | <ul> <li>the access delay W is</li> </ul>                                                           |
| sion                         | $E[W] = \frac{E[C]}{E[S] \cdot \sigma} = \frac{E[C]}{\sigma} \cdot \frac{\gamma + \sigma}{M\gamma}$ |

 $E[S] \cdot \sigma = \sigma$ 

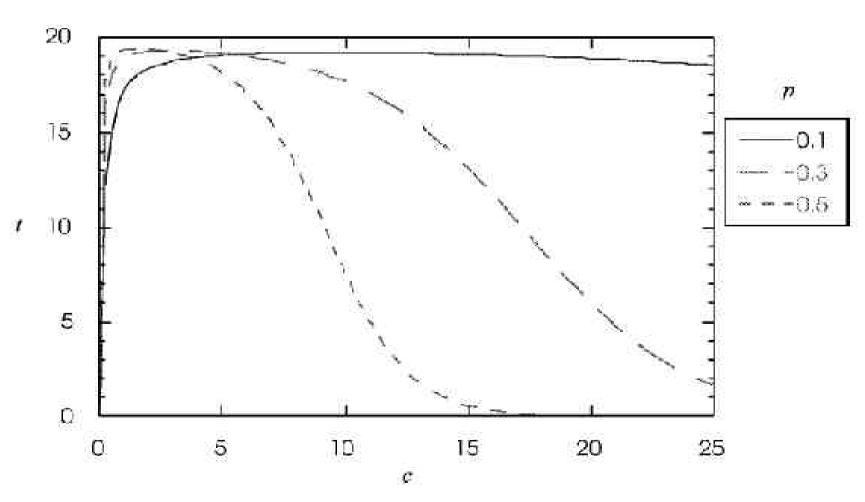
Markov analysis of the PRMA protocol for local wireless networks

Mγ

# Stability Analysis

### AdHoc Networking

- Motivation
- Overview
- Introduction
- The Packet Reservation Multiple Access Protocol
- The Voice Model
- The PRMA Model
- Packet Dropping Analysis
- Stability Analysis
- Numerical Examples
- Conclusion


- Markovian Model equilibrium point defined as:
  - Values of the state variables for which the expected change in each state variable equals zero.
- Let s, c and t be the equilibrium point number of terminals in silence, contention, and transmission respectively.
- Equilibrium at state Tra  $(1-\gamma)\left(1-\frac{t}{N}\right)c \cdot p \cdot u(c) = t\gamma$ Inflow with  $u(c) = \begin{cases} 1, c=0\\ (1-p)^{c-1}, c \ge 1 \end{cases}$

# Stability Analysis - EQ-contour

### AdHoc Networking

• Equilibrium Contour in the (c,t)-plane:

 $\delta$ (contending terms begin trans.) =  $\delta$ (transmitting terms end trans.)



Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

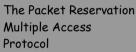
The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

# Stability Analysis - EQ-contour


### AdHoc Networking

• Equilibrium Contour in the (c,t)-plane:

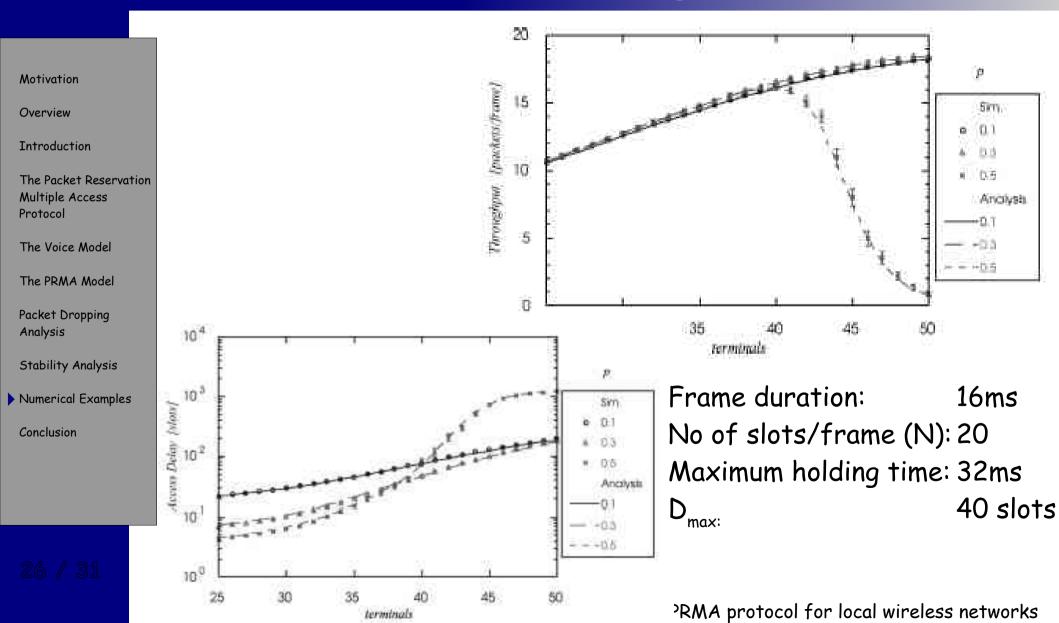
 $\delta$ (contending terms begin trans.) =  $\delta$ (transmitting terms end trans.)



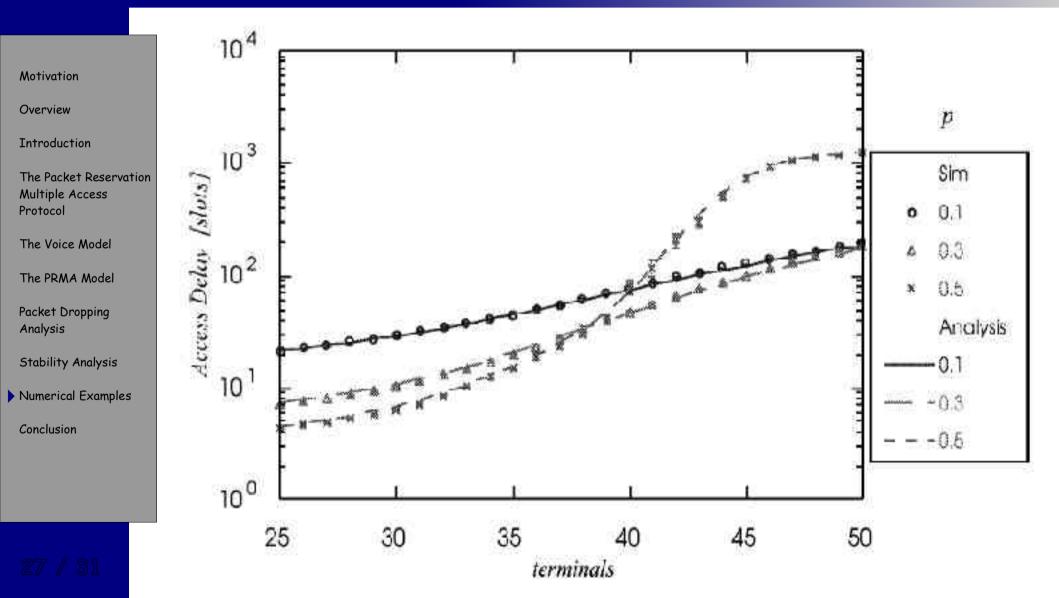
- Motivation
- Overview
- Introduction



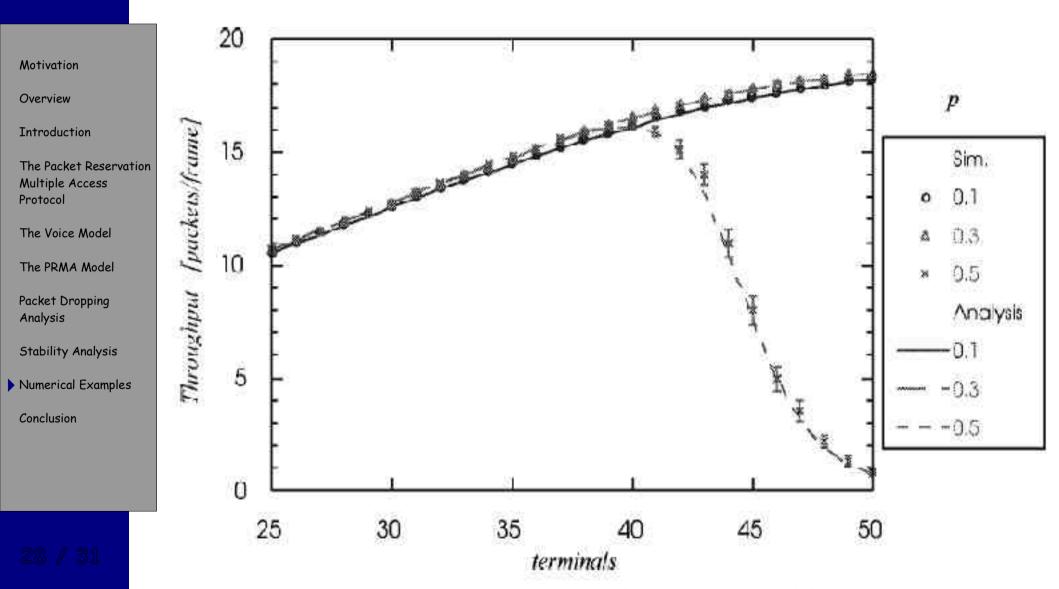
The Voice Model


The PRMA Model

Packet Dropping Analysis


Stability Analysis

Numerical Examples


#### AdHoc Networking



### AdHoc Networking



### AdHoc Networking



### AdHoc Networking

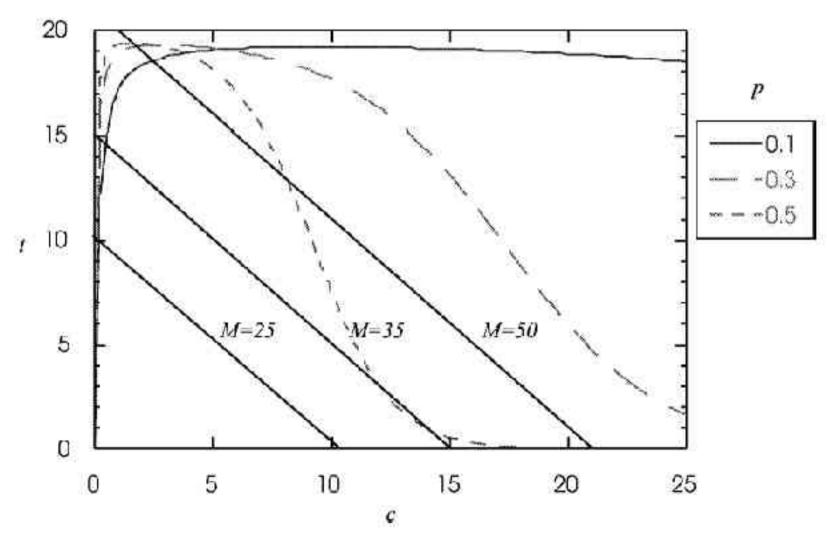
### PRMA system stability analysis



Overview

Introduction

The Packet Reservation Multiple Access Protocol


The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples



# Conclusion

### AdHoc Networking

Motivation

Overview

Introduction

The Packet Reservation Multiple Access Protocol

The Voice Model

The PRMA Model

Packet Dropping Analysis

Stability Analysis

Numerical Examples

- Within a talkspurt, several consecutive packets can be lost with serve performance degradation
- Packet dropping distribution provides a better characterization of the quality perceived by the user
- Probability p of obtaining permission to transmit greatly influences the quality of service
- Hmmm... what about packet dropping analysis???

### END

### AdHoc Networking

| Motivation                                            |
|-------------------------------------------------------|
| Overview                                              |
| Introduction                                          |
| The Packet Reservation<br>Multiple Access<br>Protocol |
| The Voice Model                                       |
| The PRMA Model                                        |
| Packet Dropping<br>Analysis                           |
| ,<br>Stability Analysis                               |
| Numerical Examples                                    |
| Conclusion                                            |
|                                                       |
|                                                       |
|                                                       |