
PASS: Abstraction Refinement for Infinite

Probabilistic Models
⋆

Ernst Moritz Hahn1, Holger Hermanns1, Björn Wachter1, Lijun Zhang2

1 Saarland University, Saarbrücken, Germany
2 Oxford University Computing Laboratory, UK

Abstract. We present PASS, a tool that analyzes concurrent proba-
bilistic programs, which map to potentially infinite Markov decision pro-
cesses. PASS is based on predicate abstraction and abstraction refinement
and scales to programs far beyond the reach of numerical methods which
operate on the full state space of the model. The computational engines
we use are SMT solvers to compute finite abstractions, numerical meth-
ods to compute probabilities and interpolation as part of abstraction
refinement. PASS has been successfully applied to network protocols and
serves as a test platform for different refinement methods.

1 Introducing PASS

Network protocols are subject to random phenomena like unreliable communi-
cation and employ randomization as a strategy for collision avoidance. Further,
they are often distributed and thus inherently concurrent. To account for both
randomness and concurrency, Markov decision processes (MDPs) are used as
a semantic foundation as they feature both non-deterministic and probabilistic
choice. Typically one is interested in computing (maximal or minimal) reachabil-

ity probabilities, e.g., of delivering three messages after ten transmission attempts
(under best-case and worst-case assumptions concerning the environment).

Probabilistic reachability is expressible in terms of least fixed points of a sys-
tem of recursive equations [1] where the unknowns correspond to the probability
of an individual state. For finite MDPs, probabilistic reachability can be reduced
to linear programming [2] or solved approximately by value iteration. Current
implementations, e.g., in the popular PRISM model checker [3], use numerical
methods like value iteration. However, the infamous state explosion problem is
even more severe than in the qualitative setting. Explicit-state methods do not
scale well in presence of expensive numerical computations. Symbolic techniques
are often not effective because the probabilities arising as intermediate results
of computations exhibit little structure or regularity to exploit.

⋆ This work is supported by the NWO-DFG bilateral project ROCKS, by the DFG
as part of the Transregional Collaborative Research Center SFB/TR 14 AVACS and
the Graduiertenkolleg “Leistungsgarantien für Rechnersysteme”, and has received
funding from the European Community’s Seventh Framework Programme under
grant agreement no 214755.



PASS1 uses the same principal machinery, but aims at supporting infinite or
very large models by resorting to counterexample-guided abstraction refinement
(CEGAR): instead of exploring the state space of the model, PASS uses pred-
icate abstraction to maintain a finite abstract model. Analysis of the abstract
model is typically very efficient since it has few states. It yields probability inter-
vals that are guaranteed to contain the probabilities in the original model. The
difference between interval bounds quantifies the approximation error caused by
abstraction. The abstraction is refined until the approximation error is small
enough. Otherwise the abstract model provides diagnostic information to refine
the abstraction. The process is described in [4, 5]. A major difference to conven-
tional CEGAR for predicate abstraction lies in the notion and interpretation of
counterexamples: counterexamples are Markov chains rather than single paths.

Predicate abstraction for probabilistic models [6] and suitable refinement
techniques [4] premiered in PASS. Preceding abstraction-refinement methods in
the probabilistic setting like magnifying-lens abstraction [7] or RAPTURE [8]
are restricted to finite models, since they locally unfold the state space of the
original model. Our previous version PASS 1.0 has only been able to compute
effective upper bounds on probabilities rather than probability intervals.

Kwiatkowska et al. pioneered game-based abstractions [9] which have the
benefit of providing safe upper and lower bounds. The idea is that the abstrac-
tion distinguishes two kinds of non-determinism: non-determinism present in the
original model and non-determinism that results from abstraction. This has been
applied to a sequential C-like language with probabilistic choice but without con-
currency [10]. In [11], concurrent probabilistic programs have been considered,
but without refinement and only for finite models.

To be able to compute probability intervals, we have recently enhanced the
PASS machinery with notions of game-based abstraction [5]. To this end, we
have introduced a coarser game-based abstraction, called parallel abstraction.
It can be efficiently computed for concurrent probabilistic programs and yields
tight probability bounds, as shown by our experimental results [5]. Beside this
feature, PASS has been improved in terms of robustness, efficiency and usability.

2 Architecture

The architecture of PASS, depicted in Figure 1, revolves around an abstraction
refinement loop.

PASS reads programs in a concurrent, guarded-command language extending
the one of PRISM. The semantics of a program is an MDP in which each state
is a valuation of program variables. Initial states are specified by an expressions
over program variables. The rest of the description consists of commands. Each
command comprises a guard and a set of probabilistic alternatives. Each alter-
native is associated with a probability and an update formula. If a state fulfills
the guard of a command, this state has a probabilistic choice to go to each state

1 The acronym stands for Predicate Abstraction for Stochastic Systems.

2



obtained by the respective update formula. Unlike PRISM, we allow variables
with infinite range. Probabilistic reachability properties are specified by giving
an expression that defines the set of goal states. PASS then computes probability
bounds to reach them.

parsermodel property

predicate

abstraction

prob. game

prob.

reachability

predicate

synthesis

Fig. 1. Architecture of PASS.

We use the predicate abstraction

method of [5] where probabilistic pro-
grams are abstracted to stochastic
games [12]. The abstraction is im-
plemented using SMT-based enumer-
ation. The abstractions of the com-
mands are stored in BDDs. Prior to
the quantitative analysis, we perform
a preprocessing step where we prune
the abstract state space to the states
that are both reachable from an initial
abstract state and can reach a goal
state. To this end, we employ a BDD-
based forward and backward analysis respectively.

The stochastic game is first converted from a symbolic BDD-based repre-
sentation to a sparse-matrix representation. Then the lower and upper bound
probabilities are computed by value iteration. Value iteration also generates game
strategies, a resolution of non-determinism in the game that witnesses the ob-
tained probabilities. These strategies form the foundation for the notion of an
abstract probabilistic counterexample [4], which can be used to either refute
properties or provide diagnostic information to refine the abstraction.

PASS supports two different refinement methods: Probabilistic CEGAR [4],
which analyzes probabilistic counterexamples based on the idea of strongest ev-
idence [13], and the method in [5], which splits abstract states where certain
strategies in the abstract game and the obtained bounds indicate a loss of pre-
cision. Both methods have their benefits. A comparison is given in [5].

3 Selected Features

Several new features have not been covered in previous publications [6, 4, 5].

Improved value iteration scheme. It is important to use an efficient value itera-
tion scheme since this step has to be repeated after each refinement step. The
order in which value iteration updates the probabilities at a state has a signif-
icant impact on the number of iterations. The value of a state depends on its
successors. Following the dependencies in the evaluation order can significantly
speed up value iteration [14]. PASS now performs value iteration according to a
reversed depth-first order starting with the goal states.

Interpolation. PASS uses interpolation to analyze paths of the abstract model.
We have written a wrapper to include different interpolation tools with imple-
mented bindings for MathSAT [15], CSIsat [16] and FOCI [17].

3



On-the-fly Abstraction. To only compute transitions of abstract states that are
actually reachable, PASS computes the abstraction layer-wise starting with the
initial states interleaving state exploration with SMT-based abstraction. In order
to benefit from learned clauses and avoid a repetitive build up of the SMT
problem, on-the-fly abstraction employs incremental SMT solving across layers.

4 Concluding remarks

PASS consists of approximately 18.000 lines of C++ code, and has been tested
on a large number of case studies. It is available for Linux with libc6. A PASS

executable and case studies can be downloaded from:

http://depend.cs.uni-sb.de/pass

References

1. Baier, C.: On Algorithmic Verification Methods for Probabilistic Systems (1998)
Habilitationsschrift, Universität Mannheim.

2. Bianco, A., de Alfaro, L.: Model Checking of Probabilistic and Nondeterministic
Systems. In: FSTTCS, Springer (1995) 499–513

3. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A Tool for Auto-
matic Verification of Probabilistic Systems. In: TACAS. (2006) 441–444

4. Hermanns, H., Wachter, B., Zhang, L.: Probabilistic CEGAR. In: CAV. (2008)
162–175

5. Wachter, B., Zhang, L.: Best Probabilistic Transformers. In: VMCAI. (2010)
362–379

6. Wachter, B., Zhang, L., Hermanns, H.: Probabilistic Model Checking Modulo
Theories. In: QEST. (2007)

7. de Alfaro, L., Roy, P.: Magnifying-Lens Abstraction for Markov Decision Processes.
In: CAV. (2007) 325–338

8. D’Argenio, P.R., Jeannet, B., Jensen, H.E., Larsen, K.G.: Reachability Analysis
of Probabilistic Systems by Successive Refinements. In: PAPM-PROBMIV. (2001)
39–56

9. Kwiatkowska, M., Norman, G., Parker, D.: Game-based Abstraction for Markov
Decision Processes. In: QEST. (2006) 157–166

10. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Abstraction Refinement
for Probabilistic Software. In: VMCAI. (2009) 182–197

11. Kattenbelt, M., Kwiatkowska, M., Norman, G., Parker, D.: Game-Based Proba-
bilistic Predicate Abstraction in PRISM. In: QAPL. (2008)

12. Condon, A.: The Complexity of Stochastic Games. Inf. Comput. 96 (1992) 203–224
13. Han, T., Katoen, J.P.: Counterexamples in probabilistic model checking. In:

TACAS. Number 4424 in LNCS (2007) 60–75
14. Dai, P., Goldsmith, J.: Topological Value Iteration Algorithm for Markov Decision

Processes. In: IJCAI. (2007) 1860–1865
15. Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R.: The Math-

SAT 4 SMT Solver. In: CAV. (2008) 299–303
16. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:

CAV. (2008) 304–308
17. McMillan, K.L.: An Interpolating Theorem Prover. Theor. Comput. Sci. 345

(2005) 101–121

4


