
A step-by-step guide through the plugin features

Christophe Boutter

May 20, 2007

This manual shall present step-by-step all features present in the MoDeST plu-
gin for Eclipse. First the editor and the related parts are shown before going over
to the plugin specific preference pages. After that an introduction on how to use
the MoDeST specific external programs is given. This is followed by an initiation
to the MoDeST language through an example presenting the primary language
features and explaining their semantics. The guide is closed by an example how
MoDeST code can be simulated in the context of the MoDeST plugin. Last, some
installation instructions are given.

This manual and some other relevant material can be found on the plugin home-
page [5]. There you will find this manual, a reference to the update site needed for
the installation and also the source code of the plugin.

1 The editor

Figure 1: Explorer with MoD-
eST file

Now that the plugin is installed the focus will be placed
onto the features and the restrictions of the plugin and
the Eclipse framework. To achieve this an example
will build a MoDeST program from the scratch. In or-
der to use some Eclipse specific mechanisms (for ex-
ample Markers, and lots of Markers are used) the file
where the program will be written in needs to be placed
in the Workspace. So first a project should be cre-
ated by using the “File” menu and choosing “New” and
“Project”. For a MoDeST project a “General Project”
is suited. After having named the project it appears in
the package explorer. By right clicking this project it is now possible to create a
“New” “File” with a ’.modest’ ending. This is necessary to trigger the activation
of the MoDeST specific editor of the MoDeST plugin.

1



Figure 2: Activated com-
pletion

Once the .modest file is created the editing can start.
The editor disposes of the usual features one would expect
such as syntax highlighting and error markup (Note: the
credited syntax errors are the same the MoToR tool would
find). To alleviate the user a text completion is present.
This completion spans all MoDeST keywords and the user
introduced variables. After having started a word the user
can activate the completion by pressing CTRL+SPACE (c.f.
2).

The afore mentioned error markup does not only mark
syntax errors (red Marker with red squiggles) but also shows unused variables to
the user (yellow Marker with yellow squiggles).

(a) Syntax error (b) Unused variable

Figure 3: Error Marker

2 Plugin preferences

In order to give the user the possibility to customize some aspects of the MoDeST
plugin two preference pages were introduced. In the first, general, one 4 the user
can change the colors of the syntax highlighting via the color fields for every cate-
gory of keywords and disable the syntax error markup via a checkbox. By default
the markup is activated and the colors are chosen a way they incorporate quite good
in the general look and feel of the Eclipse framework.

In the second preference page 5 the preferences for the launching of external
programs (c.f. 3) are put together. There are for instance the locations of the
MoDeST compiler (the momodest binary) and the FSNS interface and the path
to the destination folder of the output of all external programs. Further there is a
checkbox that says “Generate dot file”, if it is checked by default the compiler will
not compile the file but generate a dot file holding the representation of the LTS
(Labelled Transition System) of the program.

2



Figure 4: Main preferences for the MoDeST plugin

3



Figure 5: External program preferences

4



3 External programs

Figure 6: The run menu

To start the MoDeST related external programs the
“Run” dialog must be started as shown beside. In
this dialog a new configuration must be created in the
“Modest” group by right clicking the group and choos-
ing “New”.

In this new launch tab the project and the file have
to be entered manually. The user has then the possi-
bility to choose whether to run the compiler or get a
dot output or run the FSNS (First State Next State) in-
terface. The dot file checkbox is set according to the
setting in the preference page (c.f. 5).

Figure 7: Launch tab

5



When the FSNS checkbox is set and the interface starts after clicking the “Run”
button the Eclipse console View is used to display the output of the interface. The
console is also used to gather the input of the user and is thus interactive. The
output on the standard output stream is black, on standard error red and the input
is displayed in green as seen in 8.

Figure 8: The FSNS interface in the console View

4 Simulating MoDeST in Eclipse

As seen in figure 8 some means to simulate MoDeST code in a stepwise fashion
already exists. But the figure 8 shows also the drawbacks of this simulation, the
user only views the transitions and cannot see where exactly the simulation is in the
entered code. Therefore a step simulation was added to the MoDeST plugin that
can highlight the active code of the transition. So that even beginner can follow the
example used to demonstrate the functionality of the simulation, an introduction of
the MoDeST language is given first. The reader may not want to be overwhelmed
by theory therefore the introduction is done via an example that comprises all the
main language constructs. The example handled is by no means exhaustive in the
presentation of the language, for a complete introduction refer to [3]. After the
reader has gained a basic understanding of the MoDeST language, this example is
simulated presenting the main language features. The course of the simulation will
be shown on hand of pictures that explain clearly what happens in the simulation.

6



4.1 Short introduction to MoDeST

This introduction will be based on an example of a cashier in a discount market
environment. The code representing the cashier can be seen in figure 9. This
example is a slight adaptation of an example presented in [2].

4.1.1 Syntax introduction

Figure 9: The cashier code

The MoDeST language allows to specify processes (1). They can be either
composed in parallel with a par operator (2) in order to model concurrency or
composed sequentially with a ; operator. Processes can manipulate data variables
by assignments (3). Data variables are typed and must be declared before their use,
the point of declaration (4) determines their scope. These variables can be local
to a process or global. A particular type of variable which can be declared is the
clock type (5). Clocks may be read like an ordinary float variable and reset to zero
by assignment, but they advance their value linear to system time. All clocks run at
the same speed. MoDeST provides the means to sample values from a predefined
set of probability distributions. At (6) one observes that xd is assigned a sample
from the uniform distribution over the interval [10,20].

7



Processes aren’t restricted to manipulate data but they can also interact with
other parallel processes (or the environment) via visible actions (7). The occur-
rence of these actions within a process can be guarded by a when(.) clause (8),
specifying a boolean enabledness condition. These clauses may also refer to clock
values in the condition. In addition, an urgent(.) clause (9) allows one to put a
deadline on the latest occurrence of an action after which the action has to be taken.

Processes in the body of a par construct (2) perform actions and assignments
independently from each other, safe for common non-local actions that need to be
executed synchronously. For this synchronization a so called common alphabet
is built before the execution of the parallel processes. Actions can be declared
(4) either patient or impatient. When declared patient, an action has no urgency
constraint and the process waits for the parallel processes to do the same action
when possible. By default the actions are patient and thus the synchronization is
blocking because no urgency is given.

MoDeST also provides means to raise and handle exceptions, which must be
declared (4) firsthand. Within a try block (10) an exception may be raised (11),
and can be caught (12) by a corresponding catch statement. The process control
is then handed over to the exception handler. Another way of handing over process
control is by a simple process call (13). Upon termination of the called process,
the calling process gains back control, like in an ordinary procedure call. In this
setting a try-catch-block has to be seen as one process.

Several nondeterministic alternatives can be declared via an alt construct (not
present in the example). A variation of it, is the palt construct (14), which pro-
vides a weighted probabilistic choice, where each weight has the form :w: (15),
with w a positive natural number. A palt must always be preceded by an action,
either explicitly or implicitly by the tau action. Loops (16) are also present in the
syntax with a do keyword. The body is repeated until a break action is encoun-
tered (not present in the example).

4.1.2 Semantics introduction

For a complete overview over the MoDeST semantics please refer to [3]. Here is
only given a very brief introduction summarizing the most important concepts that
are not common to other languages.

Most of the programmatic features in MoDeST are handled as in other pro-
gramming languages. For example exception handling is very like the handling in
Java [4]. First have a look at concurrency in a par construct. Before execution
the common alphabet is built, e.g. the actions are collected that occur in more than
one process. During execution the different processes are executed independently
until an action is reached that is present in the common alphabet. The process of

8



this action is then blocked until all other processes that have the blocked action in
their alphabet are ready and can take this action. The action is then taken simulta-
neously and the processes resume the independent execution. The parallel process
is terminated when all child processes are terminated successfully.

Another non-common feature in MoDeST is the possibility to have transitions
that end in probabilistic alternatives. A picture of such a transition can be seen
in figure ??. Such transitions are obtained with the palt construct which has
weighted probabilistic alternatives. Such a transition is taken by first handling the
action guarding the palt construct and then making a probabilistic choice over the
alternatives of the palt and handling the assignment in the alternative. The whole
transition is done in an atomic way and cannot be split.

In the syntax introduction 4.1.1 guards were presented. These guards are writ-
ten in when(.) clauses and should not be confused with if-statements known from
other programming languages. The guards in MoDeST are blocking and are not
dismissed if their expression evaluates to false. The program control waits at the
guard until the expression evaluates to true due to an advanced clock or an assign-
ment performed in a parallel process.

4.2 The step simulation

Now that the user knows the basics of the MoDeST syntax and semantics, a simu-
lation of the code of the example 9 can be shown in order to demonstrate how the
step simulation of the MoDeST plugin works. The code presented in the figure 9
is completed in the simulation by a Queue process modelling the products waiting
to be cashed and an Arrivals process modelling the arrival of the products. The
focus in the example simulation is placed on the cashier so that the reader may
understand all that happens. The steps of the simulation are presented in seven im-
ages that show the progress of the simulation how the user would observe it in his
Eclipse instance, starting with figure 10. This images show parts of the MoDeST
Step Simulation View that is needed in order to display the transitions. This View
is opened via the menu: Window -> Show View -> Other. . . -> MoDeST-> Step
Simulation.

9



Figure 10: After having started the simulation with the “Start simulation” button
in the action bar, two transitions appear in the “Step Simulation View”. One with
the get_prod action and another with the set_prod action.

10



Figure 11: Since the interest is placed on the Cashier process the transition featur-
ing the get_prod action is selected. Marker are set in the text that highlight the ac-
tive parts of the code. Important: for the Markers to be highlighted as presented,
the user needs to set the “Text as" attribute of the “Info Marker" in the “Prefer-
ences" under “General->Editors->Text Editors->Annotations" to “Highlight".

11



Figure 12: Once the transition is taken the probabilistic choice is offered. Along
with this choice the assignments are shown to the user. The second alternative with
the lower probability is selected in order to present the exception handling.12



Figure 13: In order to show the exception handling the throw statement is selected
since it was enabled with the probabilistic choice taken before.

13



Figure 14: The thrown exception is caught and next the first action (set_price) in
the catch statement can be taken.

14



Figure 15: Now the process call of the Cashing process presents the cash action in
a transition.

15



Figure 16: After the transition with the cash action the original state is restored as
one can see on the available transitions due to the fact that the Cashier process is a
big do loop.

16



5 Installation

The installation is very straightforward and uses the Eclipse update mechanism.
This update mechanism is found in the “Help” menu under the point “Software
Updates”. Since we want to install a new plugin we choose the menu point “Find
and install”. In the newly opened window we will “Search for new features to
install”. Before installing the MoDeST plugin the ANTLR plugin is required as a
dependency. Therefore install this plugin first by following the instructions on the
homepage [1].

Now having the required dependency the installation of the actual MoDeST
plugin is possible. In the beforehand opened window “Update sites to visit” the
user creates a “New remote site” with the title ’MoDeST plugin’ and as URL the
URL of the plugin update site [6]. This new site (’MoDeST plugin’) should be
automatically selected if not select it manually. On the “Next” screen select the
topmost MoDeST feature. The “Next” screen shows a license agreement that has
to be done and after that the “Finish” button is clicked and Eclipse restarted. Now
the MoDeST plugin is ready to use.

References

[1] ANTLR plugin homepage: http://antlreclipse.sourceforge.net/.

[2] Henrik C. Bohnenkamp, Holger Hermanns, Ric Klaren, Angelika Mader, and
Yaroslav S. Usenko. Synthesis and stochastic assessment of schedules for lac-
quer production. In QEST, pages 28–37, 2004.

[3] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren.
MoDeST: A compositional modeling formalism for hard and softly timed sys-
tems. 2005.

[4] Java homepage: http://java.sun.com.

[5] Modest editor plugin. http://depend.cs.uni-sb.de/index.php?446.

[6] Modest editor plugin update site. http://depend.cs.uni-sb.de/
fileadmin/user_upload/eclipse.

17


	The editor
	Plugin preferences
	External programs
	Simulating MoDeST in Eclipse
	Short introduction to MoDeST
	Syntax introduction
	Semantics introduction

	The step simulation

	Installation

