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Eclipse and MoDeST

Eclipse

What it is
open source community

open development platform

extensible frameworks, tools and runtimes

built in Java

Some well known plugins

JDT - Java Development Toolkit

CDT - C/C++ Development Toolkit
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Eclipse and MoDeST

MoDeST

What it is
Modeling and description language for stochastic systems

Models probabilistic non-deterministic systems with realtime
constraints

Can be simulated with the MoToR tool

Easily understandable syntax

Example

action a, b, c;
alt {

:: a; b
:: c

}
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Plugin overview

Feature overview

Editor features:

Syntax highlighting

Context sensitive word completion

Syntax error recognition

An outline
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Plugin overview

Feature overview

External programs usable out of Eclipse:

The compiler

A dot output of the STA

The FSNS (First State Next State) interface
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Plugin overview

Feature overview

The MoDeST Step Simulation:

. . . let’s first have a short intro to MoDeST
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MoDeST introduction

Short intro to MoDeST

Clocks
advance with system time

can be reset

cannot be set to a certain value!

Probability distributions

It’s possible to sample a variable from a probability distribution.

x = Uniform (10,20);

Guards
They are blocking, unlike a normal if.

when (clock > 3) act
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MoDeST introduction

Short intro to MoDeST

Alternatives
Non-deterministic alternatives can be declared with an alt.

alt{
:: a
:: b

}

Probabilistic alternatives
Probabilistic alternatives can be declared via a palt.

palt{
:2: a
:1: b

}
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MoDeST introduction

Short intro to MoDeST

Synchronized concurrency

concurrency obtained with a par

synchronized over actions in the common alphabet

par{:: a; b
:: b; c

}

Relabeling of actions

Actions can be relabeled and hidden in a parallel context.

par{:: a; b
:: relabel {a} by {c} a

}
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MoDeST introduction

Short intro to MoDeST

Features well known from other programming languages:

Use of variables (int, float, . . . )

Exception handling (try, catch, throw)

Process definition (process)

Loops (do, while)
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The MoDeST Step Simulation

Overview
Step wise simulation of MoDeST code

Good visualization

MoDeST semantics conform

⇒ FSNS++

Restrictions
No variable interpretation (no assignments)

No realtime

Same restrictions as MoToR
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The simulation framework

The simulation framework consists of:

The SimulationAction button

The SimulationRoot class

The SimulationView

The model tree of SimulationNodes
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What is a SimulationNode?

It is an abstract class, parent of all nodes in the
model tree.

It represents a MoDeST language construct.

It holds the basic functionality common to all
nodes.

It defines abstract functions that all nodes must
implement differently.
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Important nodes

BreakNode: responsible for stopping a do loop

TryNode and ThrowNode: responsible for the exception handling

PaltNode: creates the PaltTransition instances

ParNode: gets the ParTransition instances and merges them.
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The typical simulation execution

1 The SimulationRoot collects the transitions.
2 The SimulationView displays this transitions.
3 The user selects one of these transitions.
4 The selected SimulationNode is notified.
5 Side effects are handled.
6 The SimulationNode notifies its parent that a transition was taken.
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The simulation end

The execution steps are repeated until:

No transition is left and all nodes are finished.

No transition is left and a deadlock occurred.

An exception was thrown and not catched.
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The progression of the simulation
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The progression of the simulation

a→
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The progression of the simulation

a→ b→
√
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The progression of the simulation

Example

alt {
:: par {:: a

:: a; b
}

:: b
}
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The progression of the simulation
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The progression of the simulation

a→
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The progression of the simulation

a→ b→
√
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Demo
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