
Introduction The MoDeST Step Simulation Demo

A MoDeST plugin for Eclipse

Christophe Boutter

Dependable Systems and Software

30.4.2007



Introduction The MoDeST Step Simulation Demo

Outline

1 Introduction
Eclipse and MoDeST
Plugin overview
MoDeST introduction

2 The MoDeST Step Simulation

3 Demo



Introduction The MoDeST Step Simulation Demo

Eclipse and MoDeST

Eclipse

What it is
open source community

open development platform

extensible frameworks, tools and runtimes

built in Java

Some well known plugins

JDT - Java Development Toolkit

CDT - C/C++ Development Toolkit



Introduction The MoDeST Step Simulation Demo

Eclipse and MoDeST

MoDeST

What it is
Modeling and description language for stochastic systems

Models probabilistic non-deterministic systems with realtime
constraints

Can be simulated with the MoToR tool

Easily understandable syntax

Example

action a, b, c;
alt {

:: a; b
:: c

}



Introduction The MoDeST Step Simulation Demo

Plugin overview

Feature overview

Editor features:

Syntax highlighting

Context sensitive word completion

Syntax error recognition

An outline



Introduction The MoDeST Step Simulation Demo

Plugin overview

Feature overview

External programs usable out of Eclipse:

The compiler

A dot output of the STA

The FSNS (First State Next State) interface



Introduction The MoDeST Step Simulation Demo

Plugin overview

Feature overview

The MoDeST Step Simulation:

. . . let’s first have a short intro to MoDeST



Introduction The MoDeST Step Simulation Demo

MoDeST introduction

Short intro to MoDeST

Clocks
advance with system time

can be reset

cannot be set to a certain value!

Probability distributions

It’s possible to sample a variable from a probability distribution.

x = Uniform (10,20);

Guards
They are blocking, unlike a normal if.

when (clock > 3) act



Introduction The MoDeST Step Simulation Demo

MoDeST introduction

Short intro to MoDeST

Alternatives
Non-deterministic alternatives can be declared with an alt.

alt{
:: a
:: b

}

Probabilistic alternatives
Probabilistic alternatives can be declared via a palt.

palt{
:2: a
:1: b

}



Introduction The MoDeST Step Simulation Demo

MoDeST introduction

Short intro to MoDeST

Synchronized concurrency

concurrency obtained with a par

synchronized over actions in the common alphabet

par{:: a; b
:: b; c

}

Relabeling of actions

Actions can be relabeled and hidden in a parallel context.

par{:: a; b
:: relabel {a} by {c} a

}



Introduction The MoDeST Step Simulation Demo

MoDeST introduction

Short intro to MoDeST

Features well known from other programming languages:

Use of variables (int, float, . . . )

Exception handling (try, catch, throw)

Process definition (process)

Loops (do, while)



Introduction The MoDeST Step Simulation Demo

The MoDeST Step Simulation

Overview
Step wise simulation of MoDeST code

Good visualization

MoDeST semantics conform

⇒ FSNS++

Restrictions
No variable interpretation (no assignments)

No realtime

Same restrictions as MoToR



Introduction The MoDeST Step Simulation Demo

The simulation framework

The simulation framework consists of:

The SimulationAction button

The SimulationRoot class

The SimulationView

The model tree of SimulationNodes



Introduction The MoDeST Step Simulation Demo

What is a SimulationNode?

It is an abstract class, parent of all nodes in the
model tree.

It represents a MoDeST language construct.

It holds the basic functionality common to all
nodes.

It defines abstract functions that all nodes must
implement differently.



Introduction The MoDeST Step Simulation Demo

Important nodes

BreakNode: responsible for stopping a do loop

TryNode and ThrowNode: responsible for the exception handling

PaltNode: creates the PaltTransition instances

ParNode: gets the ParTransition instances and merges them.



Introduction The MoDeST Step Simulation Demo

The typical simulation execution

1 The SimulationRoot collects the transitions.
2 The SimulationView displays this transitions.
3 The user selects one of these transitions.
4 The selected SimulationNode is notified.
5 Side effects are handled.
6 The SimulationNode notifies its parent that a transition was taken.



Introduction The MoDeST Step Simulation Demo

The simulation end

The execution steps are repeated until:

No transition is left and all nodes are finished.

No transition is left and a deadlock occurred.

An exception was thrown and not catched.



Introduction The MoDeST Step Simulation Demo

The progression of the simulation



Introduction The MoDeST Step Simulation Demo

The progression of the simulation

a→



Introduction The MoDeST Step Simulation Demo

The progression of the simulation

a→ b→
√



Introduction The MoDeST Step Simulation Demo

The progression of the simulation

Example

alt {
:: par {:: a

:: a; b
}

:: b
}



Introduction The MoDeST Step Simulation Demo

The progression of the simulation



Introduction The MoDeST Step Simulation Demo

The progression of the simulation

a→



Introduction The MoDeST Step Simulation Demo

The progression of the simulation

a→ b→
√



Introduction The MoDeST Step Simulation Demo

Demo


	Introduction
	Eclipse and MoDeST
	Plugin overview
	MoDeST introduction

	The MoDeST Step Simulation
	Demo

