
Universität des Saarlandes
Naturwissenschaftlich-Technische Fakultät I
Fachrichtung 6.2 - Informatik
Dependable Systems and Software

Diplomarbeit

An Eclipse plugin for MoDeST

Christophe Boutter

May 2007

Angefertigt unter der Leitung von:
Prof. Dr.-Ing. Holger Hermanns

Erklärung

Hiermit erkläre ich an Eides statt, dass ich die nachfolgende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Saarbrücken, im Mai 2007

Christophe Boutter

ii

I would like to thank Prof. Holger Hermanns for giving me the thesis
which proved to be much more challenging than I expected and for his
great support during the whole process of completion. Further I would
like to thank Niko Paltzer and Patrick Pekczynski for sharing ideas with
me. I would like to thank the people from the ANTLR-interest
mailinglist who helped me out of some real problems with the parser. A
special thanks goes to Reza Pulungan who always had an ear for my
MoDeST problems.
I’m deeply indebted to my family who supported me greatly during my
studies and to my girlfriend who was very patient the last months during
the writing of this thesis.

Abstract

Many programming tools and specific editors have seen the light the past years. One widely
known and standard for the Java language is Eclipse. Eclipse is open source, built with Java
and composed of plugins. The choice for a plugin based architecture was taken in order to ease
the maintenance load and to give a big community the possibility to build their own plugins for
Eclipse. Since the support for the MoDeST language was not at the best for the programmers, a
new plugin for Eclipse which supports the programmer by his development of MoDeST models
was realized. In this thesis a short introduction to MoDeST and the Eclipse plugin will be given
before having a deeper look into the implementation of the plugin.

v

Contents

1 Introduction 1

2 A step-by-step guide through the plugin features 3
2.1 The editor . 3
2.2 Plugin preferences . 4
2.3 External programs . 6
2.4 Simulating MoDeST in Eclipse . 7

2.4.1 Short introduction to MoDeST . 7
2.4.2 The step simulation . 10

2.5 Installation . 18

3 Parsing MoDeST 19
3.1 Lexer and Parser . 19
3.2 The outline Walker . 20
3.3 The simulation Walker . 20

4 The editor 22
4.1 The main classes . 22

4.1.1 ModestEditorPlugin . 22
4.1.2 ModestEditor . 22

4.2 Syntax highlighting and content assistance . 24
4.2.1 Syntax highlighting . 24
4.2.2 Content assistance . 24

4.3 Error markup . 25
4.4 Outline . 25

4.4.1 ModestContentOutlinePage . 25
4.4.2 Models . 26

4.5 Editor Preferences . 27
4.5.1 Default initialization . 27
4.5.2 ModestPreferencePage . 28

vi

5 Launch framework integration 29
5.1 The main classes . 29

5.1.1 ModestLaunchPlugin . 30
5.1.2 ModestLaunchDelegate . 30

5.2 Launch Preferences . 30
5.2.1 ModestLaunchPreferencePage . 30
5.2.2 ModestLaunchTab . 30

6 Step simulation 32
6.1 The simulation theory . 32

6.1.1 The MoDeST core . 33
6.1.2 Processes and exception handling . 34
6.1.3 Relabeling . 34
6.1.4 palt, guards and assignments . 35

6.2 The simulation implementation . 36
6.2.1 The framework . 36
6.2.2 The MoDeST core . 38
6.2.3 Processes and exception handling . 39
6.2.4 Relabeling . 41
6.2.5 palt, guards and assignments . 42
6.2.6 Backtracking . 42

7 Extension points used 45
7.1 modesteditor.core . 45

7.1.1 org.eclipse.ui.editors . 45
7.1.2 org.eclipse.core.filebuffers.documentSetup 46
7.1.3 org.eclipse.ui.preferencePages . 46
7.1.4 org.eclipse.ui.views . 47

7.2 modesteditor.launch . 47
7.2.1 org.eclipse.ui.preferencePages . 47
7.2.2 org.eclipse.debug.core.launchConfigurationTypes 48
7.2.3 org.eclipse.debug.ui.launchConfigurationTabGroups 48
7.2.4 org.eclipse.debug.ui.launchConfigurationTypeImages 49

8 Conclusion 50

vii

viii

1 Introduction

This thesis presents the work done towards an integration of MoDeST in the Eclipse framework.

MoDeST

MoDeST is a modelling and description language for stochastic timed systems, which was devel-
oped at the university of Twente [4]. It is used to model probabilistic non-deterministic systems
with realtime constraints. The thus obtained models can be used with a model-checker in order
to be verified or can be analyzed with a discrete event simulation. The semantic model which
serves as a base for the language are so called STAs (Stochastic Timed Automata).
The MoToR tool [16] (MOdest TOol enviRonment) gives us the means to simulate MoDeST
specifications and to analyze the obtained results. The MoDeST syntax is kept close to the C
syntax in order to simplify the first steps. In addition we find a do construct for loops, a construct
for branching (alt), probabilistic branching (palt), blocking guards (when) and synchronized
concurrency (par).

Eclipse

Eclipse [6] is an open source community whose projects are focused on building an open de-
velopment platform comprised of extensible frameworks, tools and runtimes for building, de-
ploying and managing software across the lifecycle. A large and vibrant ecosystem of major
technology vendors, innovative start-ups, universities, research institutions and individuals ex-
tend, complement and support the Eclipse platform.
Eclipse is mainly known for being a full-featured Java IDE (Integrated Development Environ-
ment). Due to the philosophy behind Eclipse, basically every feature is encapsulated into a
separate plugin, even the Java IDE is a collection of plugins and is not part of the Eclipse core.

Problem statement

When implementing a big or complex program, the programmer will find help with tools which
simplify his work by giving some features like completion and syntax highlighting. The better
ones even give support when debugging a program that doesn’t run the way it was intended.
This kind of support isn’t given for MoDeST [4], one could only use a text editor or the editor
supplemented by MoToR [16] without even syntax highlighting. Debug support wasn’t provided
either or only in a rudimentary way by the compiler that wasn’t much help.

1

1 Introduction

When one thinks about tools which provide all the above mentioned means of help for a pro-
grammer, one has to think about Eclipse [6] which gives all this and much more in the context of
the Java programming language [13]. So it was an obvious step to try to get support for MoDeST
into Eclipse in order to provide all or at least many of the features a programmer wants, in order
to give the support to a MoDeST-programmer which it lacks as of today.

Building an Eclipse plugin

Eclipse plugins are built using Eclipse itself. Eclipse helps the developer by providing a wizard
which sets up the basics every plugin needs. The integration of the newly built plugin is done
through an XML file named plugin.xml. This file contains all the informations needed to run the
plugin in Eclipse. The main informations are the plugin ID, the plugin version and the activator
class. In addition to those informations all extension points (c.f. 7) appearing in the plugin are
also recorded in the plugin.xml file. The further implementation of the plugin is done through
Java classes and packages as known from any other implementation.
After the implementation of the plugins, they are packaged into one or more features and those
features are distributed through Eclipse update sites [10]. The update site of the MoDeST plugin
and a short manual can be found on the plugin homepage [14].

Overview

Chapter 2 guides the user step by step through all the features of the MoDeST plugin for Eclipse.
Since not all features are only based on Eclipse but for example the step simulation needs a
certain understanding of the MoDeST language, MoDeST is introduced on hand of an example.
This example contains all the central language constructs and should be a good starting point for
MoDeST beginners. Chapter 3 gives an overview over the ANTLR [1] based parsing framework
that is used in the editor and the step simulation. This chapter explains the choice of the parser
generator and gives some details about the implementation of the lexer, parser and the walker
used to transform the abstract syntax tree. In chapter 4 is pictured how the features seen in
chapter 2 are built and how the MoDeST specific editor and its sideparts fits into the Eclipse
framework. Chapter 5 pictures shortly how the already existing toolchain for MoDeST was
integrated in the plugin via the Eclipse launch framework [17]. An example run of the step
simulation of the MoDeST plugin was shown in chapter 2. In Chapter 6 the theory standing
behind this simulation is presented before explaining how the theory model was implemented
and integrated into the Eclipse framework. The theory model as well as the implementation are
developed in an incremental fashion to ease the understanding. In chapter 7 a reference of the
extension points used in the build process of the plugin is given. This should facilitate the entry
of other Eclipse developers into the implementation of the plugin. Chapter 8 gives a summary
over the work presented in this thesis and shows a short outlook of further work that could be
done in relation with the MoDeST plugin for Eclipse.

2

2 A step-by-step guide through the plugin
features

This chapter shall present step-by-step all features present in the MoDeST plugin for Eclipse.
First the editor and the related parts are shown before going over to the plugin specific prefer-
ence pages. After that an introduction on how to use the MoDeST specific external programs
is given. This is followed by an initiation to the MoDeST language through an example pre-
senting the primary language features and explaining their semantics. The guide is closed by an
example how MoDeST code can be simulated in the context of the MoDeST plugin. Last, some
installation instructions are given.

2.1 The editor

Figure 2.1: Explorer with MoD-
eST file

Now that the plugin is installed the focus will be placed onto the
features and the restrictions of the plugin and the Eclipse frame-
work. To achieve this an example will build a MoDeST program
from the scratch. In order to use some Eclipse specific mechanisms
(for example Markers, and lots of Markers are used) the file where
the program will be written in needs to be placed in the Workspace.
So first a project should be created by using the “File” menu and
choosing “New” and “Project”. For a MoDeST project a “General
Project” is suited. After having named the project it appears in the
package explorer. By right clicking this project it is now possible to
create a “New” “File” with a ’.modest’ ending. This is necessary to
trigger the activation of the MoDeST specific editor of the MoDeST plugin.

Figure 2.2: Activated
completion

Once the .modest file is created the editing can start. The editor disposes
of the usual features one would expect such as syntax highlighting and
error markup (Note: the credited syntax errors are the same the MoToR
tool would find). To alleviate the user a text completion is present. This
completion spans all MoDeST keywords and the user introduced vari-
ables. After having started a word the user can activate the completion
by pressing CTRL+SPACE (c.f. 2.2).
The afore mentioned error markup does not only mark syntax errors (red
Marker with red squiggles) but also shows unused variables to the user
(yellow Marker with yellow squiggles).

3

2 A step-by-step guide through the plugin features

(a) Syntax error (b) Unused variable

Figure 2.3: Error Marker

2.2 Plugin preferences

In order to give the user the possibility to customize some aspects of the MoDeST plugin two
preference pages were introduced. In the first, general, one 2.4 the user can change the colors of
the syntax highlighting via the color fields for every category of keywords and disable the syntax
error markup via a checkbox. By default the markup is activated and the colors are chosen a way
they incorporate quite good in the general look and feel of the Eclipse framework.

Figure 2.4: Main preferences for the MoDeST plugin

In the second preference page 2.5 the preferences for the launching of external programs (c.f.
2.3) are put together. There are for instance the locations of the MoDeST compiler (the momodest
binary) and the FSNS interface and the path to the destination folder of the output of all external

4

2.2 Plugin preferences

programs. Further there is a checkbox that says “Generate dot file”, if it is checked by default
the compiler will not compile the file but generate a dot file holding the representation of the
LTS (Labelled Transition System) of the program.

Figure 2.5: External program preferences

5

2 A step-by-step guide through the plugin features

2.3 External programs

Figure 2.6: The run menu

To start the MoDeST related external programs the “Run” dialog
must be started as shown beside. In this dialog a new configuration
must be created in the “Modest” group by right clicking the group
and choosing “New”.
In this new launch tab the project and the file have to be entered
manually. The user has then the possibility to choose whether to run
the compiler or get a dot output or run the FSNS (First State Next
State) interface. The dot file checkbox is set according to the setting
in the preference page (c.f. 2.5).

Figure 2.7: Launch tab

When the FSNS checkbox is set and the interface starts after clicking the “Run” button the
Eclipse console View is used to display the output of the interface. The console is also used to
gather the input of the user and is thus interactive. The output on the standard output stream is

6

2.4 Simulating MoDeST in Eclipse

black, on standard error red and the input is displayed in green as seen in 2.8.

Figure 2.8: The FSNS interface in the console View

2.4 Simulating MoDeST in Eclipse

As seen in figure 2.8 some means to simulate MoDeST code in a stepwise fashion already exists.
But the figure 2.8 shows also the drawbacks of this simulation, the user only views the transitions
and cannot see where exactly the simulation is in the entered code. Therefore a step simulation
was added to the MoDeST plugin that can highlight the active code of the transition. So that
even beginner can follow the example used to demonstrate the functionality of the simulation, an
introduction of the MoDeST language is given first. The reader may not want to be overwhelmed
by theory therefore the introduction is done via an example that comprises all the main language
constructs. The example handled is by no means exhaustive in the presentation of the language,
for a complete introduction refer to [5]. After the reader has gained a basic understanding of
the MoDeST language, this example is simulated presenting the main language features. The
course of the simulation will be shown on hand of pictures that explain clearly what happens in
the simulation.

2.4.1 Short introduction to MoDeST

This introduction will be based on an example of a cashier in a discount market environment.
The code representing the cashier can be seen in figure 2.9. This example is a slight adaptation
of an example presented in [3].

7

2 A step-by-step guide through the plugin features

Figure 2.9: The cashier code

Syntax introduction

The MoDeST language allows to specify processes (1). They can be either composed in par-
allel with a par operator (2) in order to model concurrency or composed sequentially with a ;
operator. Processes can manipulate data variables by assignments (3). Data variables are typed
and must be declared before their use, the point of declaration (4) determines their scope. These
variables can be local to a process or global. A particular type of variable which can be declared
is the clock type (5). Clocks may be read like an ordinary float variable and reset to zero by
assignment, but they advance their value linear to system time. All clocks run at the same speed.
MoDeST provides the means to sample values from a predefined set of probability distributions.
At (6) one observes that xd is assigned a sample from the uniform distribution over the interval
[10,20].
Processes aren’t restricted to manipulate data but they can also interact with other parallel pro-
cesses (or the environment) via visible actions (7). The occurrence of these actions within a
process can be guarded by a when(.) clause (8), specifying a boolean enabledness condition.
These clauses may also refer to clock values in the condition. In addition, an urgent(.) clause
(9) allows one to put a deadline on the latest occurrence of an action after which the action has
to be taken.
Processes in the body of a par construct (2) perform actions and assignments independently

8

2.4 Simulating MoDeST in Eclipse

from each other, safe for common non-local actions that need to be executed synchronously. For
this synchronization a so called common alphabet is built before the execution of the parallel
processes. Actions can be declared (4) either patient or impatient. When declared patient, an
action has no urgency constraint and the process waits for the parallel processes to do the same
action when possible. By default the actions are patient and thus the synchronization is blocking
because no urgency is given.
MoDeST also provides means to raise and handle exceptions, which must be declared (4) first-
hand. Within a try block (10) an exception may be raised (11), and can be caught (12) by
a corresponding catch statement. The process control is then handed over to the exception
handler. Another way of handing over process control is by a simple process call (13). Upon
termination of the called process, the calling process gains back control, like in an ordinary
procedure call. In this setting a try-catch-block has to be seen as one process.
Several nondeterministic alternatives can be declared via an alt construct (not present in the
example). A variation of it, is the palt construct (14), which provides a weighted probabilistic
choice, where each weight has the form :w: (15), with w a positive natural number. A palt
must always be preceded by an action, either explicitly or implicitly by the tau action. Loops
(16) are also present in the syntax with a do keyword. The body is repeated until a break action
is encountered (not present in the example).

Semantics introduction

For a complete overview over the MoDeST semantics please refer to [5]. Here is only given a
very brief introduction summarizing the most important concepts that are not common to other
languages.
Most of the programmatic features in MoDeST are handled as in other programming languages.
For example exception handling is very like the handling in Java [13]. First have a look at
concurrency in a par construct. Before execution the common alphabet is built, e.g. the actions
are collected that occur in more than one process. During execution the different processes are
executed independently until an action is reached that is present in the common alphabet. The
process of this action is then blocked until all other processes that have the blocked action in
their alphabet are ready and can take this action. The action is then taken simultaneously and the
processes resume the independent execution. The parallel process is terminated when all child
processes are terminated successfully.
Another non-common feature in MoDeST is the possibility to have transitions that end in proba-
bilistic alternatives. A picture of such a transition can be seen in figure 6.2. Such transitions are
obtained with the palt construct which has weighted probabilistic alternatives. Such a transition
is taken by first handling the action guarding the palt construct and then making a probabilistic
choice over the alternatives of the palt and handling the assignment in the alternative. The
whole transition is done in an atomic way and cannot be split.
In the syntax introduction 2.4.1 guards were presented. These guards are written in when(.)
clauses and should not be confused with if-statements known from other programming lan-

9

2 A step-by-step guide through the plugin features

guages. The guards in MoDeST are blocking and are not dismissed if their expression evaluates
to false. The program control waits at the guard until the expression evaluates to true due to an
advanced clock or an assignment performed in a parallel process.

2.4.2 The step simulation

Now that the user knows the basics of the MoDeST syntax and semantics, a simulation of the
code of the example 2.9 can be shown in order to demonstrate how the step simulation of the
MoDeST plugin works. The code presented in the figure 2.9 is completed in the simulation by a
Queue process modelling the products waiting to be cashed and an Arrivals process modelling
the arrival of the products. The focus in the example simulation is placed on the cashier so that
the reader may understand all that happens. The steps of the simulation are presented in seven
images that show the progress of the simulation how the user would observe it in his Eclipse
instance, starting with figure 2.10.

10

2.4 Simulating MoDeST in Eclipse

Figure 2.10: After having started the simulation with the “Start simulation” button in the action
bar, two transitions appear in the “Step Simulation View”. One with the get_prod
action and another with the set_prod action.

11

2 A step-by-step guide through the plugin features

Figure 2.11: Since the interest is placed on the Cashier process the transition featuring the
get_prod action is selected. Marker are set in the text that highlight the active
parts of the code. Important: for the Markers to be highlighted as presented, the
user needs to set the “Text as" attribute of the “Info Marker" in the “Preferences"
under “General->Editors->Text Editors->Annotations" to “Highlight".

12

2.4 Simulating MoDeST in Eclipse

Figure 2.12: Once the transition is taken the probabilistic choice is offered. Along with this
choice the assignments are shown to the user. The second alternative with the lower
probability is selected in order to present the exception handling.

13

2 A step-by-step guide through the plugin features

Figure 2.13: In order to show the exception handling the throw statement is selected since it was
enabled with the probabilistic choice taken before.

14

2.4 Simulating MoDeST in Eclipse

Figure 2.14: The thrown exception is caught and next the first action (set_price) in the catch
statement can be taken.

15

2 A step-by-step guide through the plugin features

Figure 2.15: Now the process call of the Cashing process presents the cash action in a transition.

16

2.4 Simulating MoDeST in Eclipse

Figure 2.16: After the transition with the cash action the original state is restored as one can see
on the available transitions due to the fact that the Cashier process is a big do loop.

17

2 A step-by-step guide through the plugin features

2.5 Installation

The installation is very straightforward and uses the Eclipse update mechanism. This update
mechanism is found in the “Help” menu under the point “Software Updates”. Since we want
to install a new plugin we choose the menu point “Find and install”. In the newly opened
window we will “Search for new features to install”. Before installing the MoDeST plugin the
ANTLR plugin is required as a dependency. Therefore install this plugin first by following the
instructions on the homepage [2].
Now having the required dependency the installation of the actual MoDeST plugin is possible.
In the beforehand opened window “Update sites to visit” the user creates a “New remote site”
with the title ’MoDeST plugin’ and as URL the URL of the plugin [14]. This new site (’MoDeST
plugin’) should be automatically selected if not select it manually. On the “Next” screen select
the topmost MoDeST feature. The “Next” screen shows a license agreement that has to be done
and after that the “Finish” button is clicked and Eclipse restarted. Now the MoDeST plugin is
ready to use.

18

3 Parsing MoDeST

Some of the features presented in chapter 2 are strongly related to the MoDeST code entered in
the editor window of Eclipse. In order to make further use of this code it needs to be parsed and
transformed into something machine understandable that can easily be worked with. For this
purpose a parser is needed. There are many parser generators out there and probably the first
choice for a Java parser generator is ANTLR [1]. Since MoToR [16] also uses an ANTLR based
parser and the grammar could thus be leaned onto the MoToR MoDeST grammar, the choice
was easily made. In this way a good compatibility between the MoToR tool and the MoDeST
plugin can be ensured. First the lexer and parser will be introduced before explaining the two
tree walker that are used in the plugin to translate the AST (Abstract Syntax Tree) into other tree
structures put to further use.

3.1 Lexer and Parser

The lexer was kept very basic, it recognizes numbers (integers and floats), operators, comments
and identifier. In the identifier section, ANTLR is told to test for the literals that occur in the
parser. In this way only the identifier which doesn’t match a parser literal are really transformed
into identifier parser literals. Whitespaces are omitted since they are of no further need, same
goes for the comments since they have no relevance for the semantics of the code.
The parser is based onto the MoToR parser which is also written with ANTLR. The rules of both
parsers are kept very close to the language specification found in the documentation section of
the MoToR homepage [16]. This way the greatest possible compatibility between the MoDeST
plugin and the MoToR tool could be ensured. The generation rules had to be rewritten since the
MoToR parser grammar has a C++ output and the plugin needs a Java output.
Already at parsing time some error checking of the code is done. First basic type checking is
done by a lookup if the type of a variable declaration is in the list of built-in types or in the
list of self-declared types. In order to keep theses lists up to date every new type is registered
in the list of self-declared types when the parser encounters a type definition. Not only types
are checked for their declaration, this mechanism is applied on variables too. When a variable
is used in the program code entered the parser makes a lookup to ensure that the variable was
declared beforehand. Here goes the same as before, variables are registered on their declaration
in order to provide the lookup.
The builtin error recognition mechanism is put to use during the detection of syntactic errors, for
example a missing bracket. This error is recorded via the reportError method of the parser

19

3 Parsing MoDeST

and transformed into an IRegion containing the information where in the document the error is
located. This list of errors is put to further use in the editor (c.f. chapter 4).
The main purpose of the parsing is to obtain an AST (Abstract Syntax Tree) which is a low-level
tree representation of the MoDeST program parsed. This AST can then be transformed into
something more useful with the help of ASTWalker classes. The AST representation of the code
is always the same so we need only one parser. But the AST can be transformed into multiple
models of the code each used for another purpose. For every such model an own ASTWalker
is needed. The Walkers used in this thesis will be presented next. In both further uses of the
AST the line and column informations are needed to get the positioning of the nodes in the
tree. Since default AST node doesn’t contain those informations a subclass with the positioning
was needed. It was declared in the modesteditor.core.antlrparser package in the class
ASTWihOffsetInfos.

3.2 The outline Walker

The first ASTWalker presented is the ModestOutlineWalker. The Walker takes the AST and
transforms it into a model representation of the declarations. This model is used to display the
outline of the source code in the editor. Since only the declarations are taken into account the
Walker discards everything else except for the declarations.
These declarations are transformed into Model nodes of a tree. All the Model subclasses are in
the package modesteditor.core.model. There are subclasses for the declarations of actions,
exceptions, other variables, types and processes. The Process class is the only one which can
hold child nodes since only in a process declaration other local declarations can be made. How
this tree is used to build the outline will be shown in 4.4.

3.3 The simulation Walker

The second ASTWalker used is the ModestSimulationTreeWalker. The Walker builds from
the AST obtained from the parser a new tree of SimulationNode that represents the parse tree
of the entered code that contains all necessary informations such as scoping, variable names
and so on. The tree structure is not built explicitly as in the outline Walker by adding to the
parent the child node, but implicitly so that a child node registers itself by the parent during the
initialization. How the thus obtained tree is used in the step simulation of the MoDeST code will
be shown in chapter 6.
There exists subclasses of SimulationNode in the package modesteditor.core.stepsimu-
lation for every construct in the MoDeST language. Exceptions are process call since a pro-
cess call in MoDeST is nothing else than a textual replacement of the call by the process body
instantiated with the argument variables. So in the Walker the tree built by the body of the pro-
cess is put in place of the process call. The Walker doesn’t differentiate between a weighted

20

3.3 The simulation Walker

alternative used in a palt and a “normal” alternative used in a alt since it’s semantically the same
as stated in [5].

21

4 The editor

In the previous chapter the MoDeST parsing and translation tools were seen. In this chapter
the custom editor for MoDeST will be presented and the first uses for the parsing tools will be
demonstrated. The MoDeST specific editor is started whenever the MoDeST plugin is installed
in an Eclipse instance and a file with a .modest ending is opened. That happens because a new
editor for MoDeST files is registered on the editor extension point (c.f. 7.1.1).
In order to discuss the editor of the MoDeST plugin the startup class of the plugin will be shown
before going to the actual class managing the editor. Once this is done, a discussion of the
classes controlling the editor features such as syntax highlighting and error markup will follow.
The chapter will be closed by an introduction to the preferences of the editor and their realisation.
All classes presented in this chapter are part of the modesteditor.core plugin and can be
found in the modesteditor.core package or one of its subpackages.

4.1 The main classes

4.1.1 ModestEditorPlugin

The ModestEditorPlugin class contained in the modesteditor.core package is the laun-
cher for the MoDeST editor. It controls the life cycle of the modesteditor.core plugin and
thus of the editor that comes along with it.
The class complies to the singleton pattern, in this way all classes in the plugin can obtain a
reference to this class. This is very helpful since the ModestEditorPlugin class is a con-
tainer for the variables which are needed throughout the whole plugin. One of these variables
is the PLUGIN_ID which is unique for the plugin, other variables are names of the fields of the
preferences page (c.f. 4.5).
The ModestEditorPlugin class also manages a collection of references to other singleton
classes such as the ModestTextStyleProvider and ModestCodeScanner which we’ll see
later. The singleton pattern is realized with a get function that tests if the corresponding variable
is set, if it isn’t, an instance of the class will be created and will accompany the plugin during
it’s whole lifetime.

4.1.2 ModestEditor

The ModestEditor class represents the editor itself. Before everything else it’s initialized with
the function initializeEditor which uses the same function from the superclass to get the

22

4.1 The main classes

M
o

d
es

tE
d

it
o

r

#
i
n
i
t
i
a
l
i
z
e
E
d
i
t
o
r
(
)

+
g
e
t
S
i
m
u
l
a
t
i
o
n
(
)
:

M
o
d
e
s
t
S
i
m
u
l
a
t
i
o
n

+
g
e
t
E
d
i
t
o
r
(
)
:

M
o
d
e
s
t
E
d
i
t
o
r

M
o

d
es

tS
o

u
rc

eV
ie

w
er

C
o

n
fi

g
u

ra
ti

o
n

+
g
e
t
C
o
n
t
e
t
n
A
s
s
i
s
t
a
n
t
(
)
:

I
C
o
n
t
e
n
t
A
s
s
i
s
t
a
n
t

+
g
e
t
P
r
e
s
e
n
t
a
t
i
o
n
R
e
c
o
n
c
i
l
e
r
(
)
:

I
P
r
e
s
e
n
t
a
t
i
o
n
R
e
c
o
n
c
i
l
e
r

M
o

d
es

tT
ex

tS
ty

le
P

ro
vi

d
er

M
o

d
es

tC
o

m
p

le
ti

o
n

P
ro

ce
ss

o
r

+
c
o
m
p
u
t
e
C
o
m
p
l
e
t
i
o
n
P
r
o
p
o
s
a
l
s
(
)
:

I
C
o
m
p
l
e
t
i
o
n
P
r
o
p
o
s
a
l
[
]

#
e
x
t
r
a
c
t
P
r
e
f
i
x
(
t
e
x
t
V
i
e
w
e
r
:
I
T
e
x
t
V
i
e
w
e
r
,
d
o
c
u
m
e
n
t
O
f
f
s
e
t
:
i
n
t
)
:

S
t
r
i
n
g

M
o

d
es

tS
im

u
la

ti
o

n

+
g
e
t
M
o
d
e
l
s
(
)
:

M
o
d
e
l
[
]

+
g
e
t
V
a
r
i
a
b
l
e
s
(
)
:

L
i
s
t
<
S
t
r
i
n
g
>

+
u
p
d
a
t
e
(
)

-
p
a
r
s
e
(
)

M
o

d
es

tC
o

n
te

n
tO

u
tl

in
eP

ag
e

+
c
r
e
a
t
e
C
o
n
t
r
o
l
(
p
a
r
e
n
t
:
C
o
m
p
o
s
i
t
e
)

+
s
i
m
u
l
a
t
i
o
n
C
h
a
n
g
e
d
(
s
i
m
:
M
o
d
e
s
t
S
i
m
u
l
a
t
i
o
n
)

-
u
p
d
a
t
e
(
)

M
o

d
es

tC
o

n
te

n
tP

ro
vi

d
er

+
g
e
t
E
l
e
m
e
n
t
s
(
i
n
p
u
t
E
l
e
m
e
n
t
:
O
b
j
e
c
t
)
:

O
b
j
e
c
t
[
]

M
o

d
es

tL
ab

el
P

ro
vi

d
er

+
g
e
t
T
e
x
t
(
e
l
e
m
e
n
t
:
O
b
j
e
c
t
)
:

S
t
r
i
n
g

+
g
e
t
I
m
a
g
e
(
e
l
e
m
e
n
t
:
O
b
j
e
c
t
)
:

I
m
a
g
e

Figure 4.1: The main classes of the modesteditor.core plugin
23

4 The editor

basics initialized and then sets the PreferenceStore where the preferences of the editor are saved,
before it sets the SourceViewerConfiguration that controls how the entered code is displayed.
The editor class is also responsible for supplying its OutlinePage to the Eclipse core. This works
with the getAdaptermethod which gives back a reference of a singleton ModestContentOut-
linePage, the OutlinePage can be used as singleton since every editor has to have it’s own
OutlinePage. The OutlinePage will be discussed in more detail in 4.4.
Another singleton in the class is a ModestSimulation (c.f. 4.4.2) which is a high-level repre-
sentation of the code entered in the editor and is used a root of the tree displayed in the outline.
The ModestEditor class registers itself with the ModestSimulation as listener in order to get
notified when changes occur and thus react to those, for example update the outline.

4.2 Syntax highlighting and content assistance

The ModestSourceViewerConfiguration class configures the SourceViewer of the Mod-
estEditor, that is it tells the editor how to display the entered text and what actions can be taken
out of the editing field. The class can be used to supply syntax highlighting and content assis-
tance in order to simplify the work of the developer.

4.2.1 Syntax highlighting

Syntax highlighting is done on hand of a PresentationReconciler which are obtained from
the ModestSourceViewerConfiguration with the method getPresentationReconciler
which returns PresentationReconciler for single line, multi line comments and the other text
regions.
The PresentationReconciler has DefaultDamagerRepairerwhich supply the information how
to display the text. These DamagerRepairer get their information, namely TextAttributes, from
the ModestTextStyleProvider. The StyleProvider gives the font style and color for every
text region. The colors can be adapted in the preferences (c.f. 4.5).
The single line and multi line comment regions are easily recognized, for the keywords which
shall also be part of the syntax highlighting one needs a special token scanner in order to prop-
erly recognize the different kinds of keywords. This is done via the ModestCodeScanner
(contained in the package modesteditor.core.modest). The CodeScanner has rules (see
org.eclipse.jface.text.rules.IRule) for the different kinds of keywords. Every rule is associated to
an IToken (see org.eclipse.jface.text.rules.IToken) containing the appropriate TextStyle obtained
from the ModestTextStyleProvider.

4.2.2 Content assistance

For the time being the content assistance is completely realized in the ModestCompletionPro-
cessor class. computeCompletionProposals is hereby the main method, in which the pro-
posals that are seen in the pop-up are actually computed. On hand of the method extractPrefix

24

4.3 Error markup

the word prefix is extracted and the compute method tries to match the prefix against the list of
predefined keywords. If a prefix matches the keyword is put in the result array of proposals.
Once this is done the list of variables is retrieved from the ModestSimulation and the compute
method tries to match the prefix against the variables and if the match of a variable is positive
this variable is put into the proposals list which will be displayed to the user.

4.3 Error markup

The Eclipse framework offers the programmer some nice ways to display information for the
user in the editor. This is done with Marker that are registered with resources of the workspace.
This means that error markup cannot be done for files outside of the current workspace.
In order to place these Markers correctly so called Regions are used to determine the placement.
In the plugin there are two different categories of markup. The first is a markup for syntactical
errors recognized by the parser. The second is a markup for unused variables that are declared
but not used in the further program code and thus superfluous. The syntax error Regions are
computed in the parser and the unused variables Regions are computed in the createWarnings
method of the ModestSimulation class during each parse run.
The ModestEditor class finally creates the Marker from the list of errors and unused variables
with the methods addErrorMarkers and addWarningMarkers. The created Marker are only
different by their Severity that is for the errors ERROR and for the unused variables WARNING.
Those Markers are then represented (in default behaviour) by a cross in a red circle in the left
ruler of the editor and red squiggles under the corresponding text for the error Markers and the
warning Markers are represented by a yellow triangle in the left ruler and by yellow squiggles
in the text.

4.4 Outline

Many Eclipse plugins which handle structured program code come with an outline. The outline
view [9] gives a quick overview over the structure of the entered code. On hand of this overview
the developer doesn’t lose track of the processes and variables easily and can always have a
quick look at the outline as a reference.
The parsing and model building was already discussed in 3. So this chapter will only illustrate
how the outline is built from an existing tree model. The start makes the central class of the
outline.

4.4.1 ModestContentOutlinePage

The ModestContentOutlinePage class is the class which controls the display of the outline
corresponding to an editor. In the build process we leaned on the article about TreeViewer [11]
in the Eclipse knowledge database. In the constructor we register the ContentOutlinePage as

25

4 The editor

Figure 4.2: The outline View

a listener in the ModestSimulation of the editor in order to get notified when the simulation
changes. In the createControl method, which is called during the initialization, we set up a
TreeViewer to display the content, then set the ContentProvider to a ModestContentProvider
and the LabelProvider to a ModestLabelProvider and finally we set the input of the Tree-
Viewer to the ModestSimulation of the editor. The ContentProvider is responsible for the
navigation through the model tree, each method gets a Model (c.f. 4.4.2) and calls the corre-
sponding method of the Model. The LabelProvider is responsible for the labelling of the tree in
the TreeViewer, this includes the images and the text of the nodes.
In order to keep the OutlinePage up to date, it registered itself as a listener to the ModestSimula-
tion so that the ModestSimulation is responsible for the updating whenever it is modified.
When an update happens the simulationChanged method is called which in turn calls the
update method. The update method refreshes the TreeViewer.
Every outline view disposes of a selection mechanism. When the user selects something in
the outline it is custom in Eclipse to highlight the declaration of the selection and to direct the
cursor to this position. This is done in the selectionChanged method. This method retrieves
the position informations from the selected Model and with the selectAndRevealmethod from
the editor gets the highlighting done.

4.4.2 Models

The models in the tree of the TreeViewer are all subclasses of the Model class which provides
a common framework for all models, such as a name and a parent Model which is either null if
the Model is at the top level or a process if the declaration is in a process declaration.

26

4.5 Editor Preferences

ModestSimulation

The ModestSimulation class is a container for the Models that are extracted from the docu-
ment. The simulation class follows a singleton pattern and is responsible for itself. That means
that it has to rebuild the Models on an update of the document and after that notify the registered
listeners that it has changed. The simulation class has methods to add and remove those listeners
and has methods to return the contained Models to the caller. To get the update procedure going
there is an update method that calls the parse method (note that here occurs the only parsing
for the outline). The class is also the store for the current AST that can be put to further use in
other parts of the plugin.

Process

The Process class stands for a process declaration in the entered document. It is a subclass of
the Model class. In addition to the inherited attributes and methods it has to take care of the
hierarchy. A process is namely the only MoDeST construct which can have declarations in it.
Thus it is the only Model that has children in the outline tree. The class therefore has methods
to add and remove children and to get them for further work such as displaying in the outline.

Others

The other Model classes only add very small functionality to the base class. The subclassing is
needed in order to have attributes only used in this construct and not an excess that doesn’t fit
the actual declaration. So for example the ModestAction class has an attribute patient that
reveals whether the action is patient or not in the MoDeST context.

4.5 Editor Preferences

Typically an user wants to be able to customize some things in his editor. In order not to have
to recompile the whole editor, preferences were introduced. So an user can easily change some
of the behaviour of the editor. Some kind of preferences are already defined by Eclipse (such as
the font settings), others were newly introduced. In the main preference page the user can only
change the colors of the syntax highlighting, later on there are some subpages to come.

4.5.1 Default initialization

The default initialization of the main page happens on hand of the method initializeDefault-
PluginPreferences in the ModestEditorPlugin class. The initialize method is called in the
start method of the class in order to set the defaults for the self defined preferences.
All preferences are maintained in a unique store for the plugin and referenced through unique
names. These names are known through string variables declared in the plugin class, so they can
be accessed from every class in the plugin since the plugin class is a singleton.

27

4 The editor

4.5.2 ModestPreferencePage

The preferences of the plugin are managed in the ModestPreferencePage which is an exten-
sion of the Eclipse class FieldEditorPreferencePage. First it is needed to set the used pref-
erence store, which we get from the ModestEditorPlugin class. After the createFieldEdit-
ors method is called which creates five ColorFieldEditor for the five newly defined colors.
The rest is managed through the preference framework of Eclipse. Further it is possible to dis-
able the error markup by a checkbox. In the default the error markup is enabled.

28

5 Launch framework integration

In the previous chapter, the means to easily enter and alter MoDeST code were shown. In this
chapter, the possibilities to use this previously specified code will be presented. Since MoDeST
has an already existing toolchain with a compiler and an own simulator it was only natural to
integrate the existing tools into the new plugin for Eclipse. In order to get this integration a
new plugin was created with the name modesteditor.launch. The launch part points out
the connection with the Eclipse launch framework [17]. This launch framework was designed
to give plugin developers a platform for the integration of external tools into Eclipse and the
developed plugins.
The goal in the MoDeST plugin was not only to integrate the MoDeST compiler and its possible
dot output but also to give access to the FSNS (First State Next State) interface. FSNS is a state
simulator that simulates MoDeST specifications with a textual user interface. In order to keep
the execution of the tools simple a preference page for the launch plugin was created which
comprises the relevant paths.
First the main classes of the modesteditor.launch plugin, such as the startup class and the
delegate class which starts the actual programs. Then the preferences of the plugin will be
shown, divided into the preference page and the launch tab window which holds the informations
for the program arguments.

5.1 The main classes

ModestLaunchDelegate

+launch()

-execModest()

-execFSNS()

-getCopyCmdLine()

ModestLaunchTab

+createControl(parent:Composite)

+initializeFrom(configuration:ILaunchConfiguration)

ModestLaunchPreferencePage

+init(workbench:IWorkbench)

#createFieldEditors()

Figure 5.1: The main classes of the modesteditor.launch plugin

29

5 Launch framework integration

5.1.1 ModestLaunchPlugin

The activator class of the modesteditor.launch plugin is the ModestLaunchPlugin class.
As seen before, it follows a singleton pattern and can be accessed through the getDefault
method. The class is also a container for the string variables that represent the names of the
plugin specific preferences such as COMPILER_LOCATION. In the startmethod the default pref-
erences (c.f. 5.2) are set.

5.1.2 ModestLaunchDelegate

The ModestLaunchDelegate class implements the ILaunchConfigurationDelegate inter-
face which is part of the Eclipse launch framework. The interface only requires a launchmethod
that takes a LaunchConfiguration and executes an IProcess. The LaunchConfiguration is
obtained from the run dialog of Eclipse. This configuration combined with the preferences gives
all the information needed to create a process that compiles the document from the editor.
The actual IProcess creation for a compilation is done in the execModest method. After
having executed the IProcess, the obtained files are copied to the specified output location on
hand of the information provided by the getCopyCmdLinemethod. To copy the files the Jakarta
commons IO package [12] is used because it provides easy file manipulation without having to
manage low level Java readers.
If the FSNS checkbox is checked in the LaunchTab the fsns binary is launched, not the com-
piler. The simulation is displayed in the Eclipse Console view and the user choices are entered
there too. How this looks like can be seen in figure 2.8.

5.2 Launch Preferences

5.2.1 ModestLaunchPreferencePage

As we’ve seen in the main preference page (c.f. 4.5) the PreferencePage for the launch plu-
gin is a FieldEditorPreferencePage. In the extension point definition (c.f. 7.2.1) the
ModestLaunchPreferencePage is put in the same category as the main preference page for
MoDeST, thus it is displayed as a subpage of the main page and all MoDeST specific preferences
are summarized under one menu item to simplify the finding for the user.
In the constructor we set the PreferenceStore to the PreferenceStore of the plugin. In this Pref-
erenceStore on hand of the createFieldEditors method we create fields for the path to the
compiler, the path to the FSNS binary, the path to the output directory and a checkbox for the
dot file creation.

5.2.2 ModestLaunchTab

In order to really be able to call a MoDeST program through the run dialog of Eclipse, it is
necessary to define a LaunchTab (c.f. 7.2.3). This LaunchTab provides Eclipse with the Launch-

30

5.2 Launch Preferences

Configuration previously mentioned and holds the information for the arguments of the programs
called by Eclipse. In order to run the compiler not much is needed. So we just have to enter the
project name and the file name of the file to compile. In addition to this, the user is permitted
to select if he wants a dot file as output. This flag is set if the corresponding flag is set in the
preferences.
If the “run FSNS” checkbox is checked the fsns binary is launched rather than the compiler. In
this way the user can access a FSNS step simulation in the Eclipse Console view.

31

6 Step simulation

After having seen in chapter 2 and the previous chapter how the MoDeST plugin can be used to
simulate a MoDeST specification with FSNS, this chapter will deal with a new way to simulate
MoDeST code. As seen in figure 2.8, the output of the FSNS interface isn’t that expressive,
especially because there is no real reference to the code used for the simulation. This combined
with the wish to be able to test out the behaviour of some MoDeST code with an immediate
feedback was the reason why a new simulation was created. This step simulation was to be fully
integrated into the Eclipse framework and the MoDeST plugin and thus could dispose of a direct
access to the code in the MoDeST editor of the plugin. This allowed visual highlighting of the
active parts in the selected transitions.
The realisation of the step simulation was done incrementally beginning with a subset of the
MoDeST grammar called the MoDeST core. In a first step, process definitions, calls and the
exception handling were added to the core. Next the relabeling constructs were put in before
adding probabilistic transitions, guards and assignments to the language set. After this last step
the full MoDeST language was supported.
For a better grasp of the theory model behind the simulation a certain familiarity with the MoD-
eST semantics is needed, therefore please refer to 2.4.1. This theory model is presented first in
the afore mentioned incremental fashion. Then a discussion of the simulation implementation
is shown starting with the Eclipse integration before getting to the theory implementation and
finishing with the extra features.

6.1 The simulation theory

An introduction to the theory model of the step simulation will be given next. This introduction
will present the relation between the model and the operational semantics of MoDeST. This
semantics as it is explained in [5] is an action driven one. This means that a step in the state
automaton is triggered by a MoDeST action. Such a transition looks like the figure 6.1.

act

Figure 6.1: A transition in the MoDeST core

When one looks at the tree representation of a MoDeST program as it is given by the MoDeST
process behaviour grammar, one will see that the actions are always placed at the leaves of

32

6.1 The simulation theory

the tree. The only other MoDeST language construct placed at the leaf position is the throw
statement, but this will be discussed later.
So a transition is basically the same as a consumption of a leaf node of the tree. What happens
with the rest of the tree when the leaf was consumed depends on the parent node of the con-
sumed leaf. In order to get a better notion of this consumption model, it will be discussed in
the following giving the theory model incrementally beginning with a small subset. The exact
semantic rules will not be presented in detail since they can be appreciated in [5].

6.1.1 The MoDeST core

To begin with, only a subset of the MoDeST grammar will be inspected. This subset was called
MoDeST core by Prof. Hermanns in one of his lectures. The subset is the following:
MoDeS Tcore = {P ::= act | P1; P2 | alt{:: P1 . . . :: Pk} | do{:: P1 . . . :: Pk} | par{:: P1 . . . :: Pk}}

with P denoting a process and act and action. Actions can be self-declared or the built-in actions
STOP, tau and break.
Such a process P can be one of the following:

• a sole action. The representing tree is formed only by one node namely the action it-
self. When it is consumed the whole tree is consumed and the simulation is terminated
successfully.

• a sequential process. This process is the root node of the tree and the first child is P1 and
the second child is P2. When the first child is successfully terminated, the second child
will be inspected. When this one is terminated too, the whole tree is terminated.

• an alt construct. This construct is the root of the tree and its children are alternatives.
This means that only one of the alternatives can be active at a time and when one of these
subtrees are terminated the whole tree is terminated.

• a do construct. This construct behaves very like the alt construct. The difference is that
when a subtree is terminated the whole tree returns to its original state. A special case is
a break action that will be seen before long.

• a par construct. As with the alt construct, the par construct is the root of the tree and
has alternatives as children. Here all children are executed in parallel as the name says.
As seen in [5] the execution of the children is synchronized over the action in the common
alphabet. An action is in the common alphabet of a par construct if the action occurs in
another alternative of the par construct. The synchronization rules says that all actions
in the common alphabet have to be executed in parallel, note that this synchronization is
blocking. Remember the common alphabet of a par construct is built at the beginning
of the program execution and remains the same until the end of the execution. Thus an
action has to synchronize over the common alphabet even if the action was already taken
once. The tree terminates when all children are terminated.

33

6 Step simulation

Two special cases of an action can occur in the MoDeST core. The first one is a break action
that creates a signal on consumption. This signal goes up in the tree hierarchy until it meets a do
node or the root. In the case it meets a do node, this node is terminated. In the other case only
the action node is terminated and the tree behaves as if a normal action was taken.
The second special case is a STOP action. If this action is consumed the tree stops every further
execution and terminates but not successfully!

6.1.2 Processes and exception handling

The MoDeST behaviour grammar is now extended by process calls and exception handling. The
syntax is then:

MoDeS Tproc = MoDeS Tcore ∪ {ProcName(e1, . . . , ek) | throw(excp) |

try{ P } catch excp1 { P1 } . . . catch excpk { Pk }}

A process call is a substitution of the call by the body with the variables instantiated from the
values of the arguments in the call. MoDeST disposes of an exception handling mechanism very
similar to the one known from Java. An exception can be thrown via a throw statement and thus
interrupts the normal process execution. If it is not explicitly caught by a catch statement, it
terminates the program execution. If the exception is caught the process declared in the catch
statement is executed next.

6.1.3 Relabeling

The MoDeST behaviour grammar is now extended by the relabeling language features. The
syntax is then:

MoDeS Tlabel = MoDeS Tproc ∪ {P ::= hide{act1, . . . , actk} | extend{act1, . . . , actk} |

relabel{a1, . . . , ak} by {a′1, . . . , a
′
k}}

The synchronization in a parallel setting is done over the actions in the common alphabet. In
order to modify this synchronization three language constructs were introduced: hide, extend
and relabel. These constructs modify the process declared after the the respective construct.

• The hide construct serves, as it’s name already suggests, to hide actions before the con-
text. The actions in the hide statement are not subject to synchronization in parallel
processes even if they are in the common alphabet.

• The extend construct extends the alphabet of a process with the actions occurring in the
extend statement. This has no impact for the behaviour of the process following the
statement only to the behaviour of the parallel process enclosing the statement.

34

6.1 The simulation theory

• The relabel construct is a renaming of the actions before and after the by keyword. The
action with the index k of the list before the by is renamed in the action with the index
k of the list after the by keyword. The alphabet of the process following the relabel
statement is modified accordingly.

6.1.4 palt, guards and assignments

The MoDeST behaviour grammar is now extended by probabilistic alternatives, guards and
assignments. The syntax is then:

MoDeS T = MoDeS Tlabel ∪ {P ::= when(b) P | urgent(b) P |

act palt { : w1 : asgn1; P1 . . . : wk : asgnk; Pk}}

Where b is an expression denoting a constraint, wi is a weight for the alternative and asgni is an
assignment block. The weights are used to determine the probability of an alternative.

act, guard

prob1, assignment1

prob2, assignment2

prob3, assignment3

Figure 6.2: A probabilistic transition

With this extension the semantics is extended by a new type of transition, so called probabilistic
transitions. An example is depicted in 6.2. The picture shows how the transition should be
handled, first the action act is taken and then a probabilistic choice is done and the corresponding
assignments are executed in an atomic way.
In the case the action act of the probabilistic transition is combined with others in a parallel
transitions the probabilistic choice has still to be executed in the same way. If there are more
than one of those “palt”-transitions with the same action they are combined too, see 6.3.

35

6 Step simulation

act, guard1

prob1, asgn1

prob2, asgn2

act, guard2 prob3, asgn3

prob4, asgn4

in parallel with

=>
act, guard1 && guard2

prob1*prob3, {asgn1,asgn3}

prob1*prob4, {asgn1,asgn4}

prob2*prob4, {asgn2,asgn4}

prob2*prob3, {asgn2,asgn3}

Figure 6.3: Parallel probabilistic transitions over the same action act

6.2 The simulation implementation

After having seen the theoretic model of the step simulation, the implementation of this model
will be discussed next. This implementation is done in the modesteditor.core.stepsimula-
tion package. All mentioned classes in this section are to be looked for in this package. For
simplicity the naming of the classes was kept close to the name of the corresponding MoDeST
constructs. The different classes related to the theory model and their methods will be inspected
in the same incremental setup as the theory for a better understanding. First the framework of
the simulation which integrates the simulation into Eclipse is shown. Next the implementation
of the theory model is discussed in detail before going over to the backtracking feature as an
extra.

6.2.1 The framework

The framework consists of the SimulationAction, the SimulationRoot, the model tree and
the SimulationView class. The SimulationAction is responsible for the startup of the simu-
lation. It has to check if a simulation View is already opened and after that starts the TreeWalker
(c.f. 3.3) to obtain the model tree. The SimulationRoot class is the root element of the
TreeViewer used in the SimulationView. It holds the root of the model tree and provides the
interface for the communication with the Viewer. The model tree is built of SimulationNode
instances and is very close to the parse tree of the MoDeST grammar.
The abstract class SimultionNode is the parent class of all classes representing the MoDeST
language constructs. This class regroups all fundamental methods and attributes every construct
should have. The basic methods are implemented and the method that must be differentiated

36

6.2 The simulation implementation

SimulationAction

+run()

+update()

SimulationRoot

+getModels(): Object[]

-update()

-fireModelChanged()

+choiceTaken(alt:SimulationNode,isInBackTracking:boolean)

+getFinishingMessage(): String

+clearState()

SimulationView

+createPartControl(parent:Composite)

#createActions()

#createToolbar(parent:Composite)

+selectionChanged(event:SelectionChangedEvent)

+takeAlternative()

+back()

+forward()

+simulationChanged(sim:SimulationRoot)

-update()

+getView(): SimulationView

+setRoot(root:SimulationRoot)

+reset()

uses

Figure 6.4: The simulation framework classes

37

6 Step simulation

within the representing language construct are left abstract. Methods as collectTransitions
or collectParTransitions are left abstract since every construct has other ways to take tran-
sitions.
The SimulationView class represents the View used for the interaction with the user during the
step simulation. The class follows a singleton pattern in order to easily have access to the View
from other classes such as the SimulationAction. The content of the View are the possible
transitions that are presented on hand of a TreeViewer [11]. The View has one action for
choosing the selected transition and two actions for the backtracking (c.f. 6.2.6).

6.2.2 The MoDeST core

In this part the core of the MoDeST language as it is presented in 6.1.1 is discussed.

Actions

The ActionNode class represents all MoDeST actions except break that has an own representa-
tion. The ActionNode has as alphabet it’s name and gives back itself when the collectTransi-
tions method is called. When the action is then taken the instance is set non active and notifies
the parent that it is finished by calling the childIsFinished method.

alt

The AltNode class represents an alt construct in MoDeST as children it has instances of the
Alternative class. Those instances are only container for the underlying sequential processes
that give everything through to them. The AltNode collects the transitions from all the children
in a list and gives this list back so that the user can choose from this list.

do

The DoNode class is a subclass of the AltNode since it behaves mostly similar. A difference
is that when a child signals that it is finished via the childIsFinished method, the DoNode
doesn’t finish but sets active all children again. This is done until a break is taken and the
DoNode gets the notification via the breakTransitionTaken method then all child nodes are
set inactive on hand of the releaseTransitions method and the DoNode is finished too.

break

The BreakNode class represents a break in the MoDeST language and behaves very much like
an ActionNode. But the BreakNode has no alphabet and triggers the breakTransitionTaken
method when it is taken.

38

6.2 The simulation implementation

Sequential Processes

The SequentialProcess class represents processes that are executed sequentially and are ex-
pressed by a separation via “;” in MoDeST. Since the children are to be executed sequentially
only the first child in the list is set active on start. When this child is finished the next is set
active and when the last is finished the process is finished too.

par

The ParNode class represents the par construct in the MoDeST language. The class builds the
common alphabet when set active. This alphabet are the actions that occur in pairwise distinct
children of the par construct. The ParNode is responsible for collecting the parallel transitions
that are taken over the common alphabet. Thus when the collectTransitions method is
called, it calls the collectParTransitions method. This method is responsible for putting
the parallel actions into one ParTransition instance and to check if all of these actions are
present in the other case the transition is disabled. When all children are finished the node is
finished too.

Parallel transitions

The ParTransition class is the representation of a parallel transition and thus a container
for actions within the common alphabet with the same name. The transition is only enabled
when all actions contained are enabled too. When the transition is taken all the contained ac-
tions are taken via a call of the takeTransition method of the ActionNode. Since a call
of collectParTransitions always creates instances of the ParTransition class, it has to
be ensured that break, STOP and tau actions are always enabled since they are never in the
common alphabet.

6.2.3 Processes and exception handling

The now discussed addition to the core are seen in 6.1.2. Process definitions and calls are already
discussed in 3.3 since they are handled completely by the parsing framework. A process call is
represented as a normal program continuation and there is no need for a special handling.
The exception handling in the simulation is done on hand of two specific classes. The first one
is the ThrowNode representing a throw statement in the MoDeST language. When this throw-
statement is taken in a transition the exceptionThrown method of the SimulationNode is
called. This method propagates the exception to the root of the tree until it reaches a TryNode
or the root of the tree. If the exception reaches the root of the tree the simulation is aborted with
an according message.
The TryNode class represents a try block with the related catch blocks in the MoDeST lan-
guage. This class behaves as a container for the code inside the try-block until an exception
is thrown inside the block. Then the exceptionThrwon method is called and in this method a

39

6 Step simulation

SimulationNode

+takeTransition()

+generateAlphabet()

+isFinished()

+collectTransitions(): List<SimulationNode>

+collectParTransitions(): List<ParTransition>

+childIsFinished(child:SimulationNode)

+breakTransitionTaken()

+releaseTransitions()

+stopCalled()

+exceptionThrown(exc:ThrowNode)

+createSimHighlighting(resource:IResource,document:IDocument,isPalt:boolean)

ActionNode

+getAssignment(): String

AltNode

DoNodeBreakNode

+getAssignment(): String

SequentialProcess

+isStopped(): boolean

+isExceptionAborted(): bollean

+extendAlphabet(extend:List<String>)

+hideAlphabet(hide:List<String>)

+addRelabeling(relabel:List<String>,relabelby:List<String>)

+relabel(toRelabel:List<ParTransition>): List<ParTransition>

ParNode

-buildCommonAlphabet()

+buildPaltTransitions(trans:List<ParTransition>)

ParTransition

+addParTransition(trans:ParTransition)

+addBreakTransition(trans:BreakNode)

+isEnabled(): boolean

+getRepresentingLetter(): String

+relabelBy(newLabel:String)

+getTransitions(): List<SimulationNode>

+addPaltTransition(trans:PaltTransition)

+addPaltTransitionList(trans:List<PaltTransition>)

+getAssignment(): String

Figure 6.5: The classes of the MoDeST core

40

6.2 The simulation implementation

lookup occurs that checks whether a corresponding catch statement is available or not. If so the
code of the catch statement is executed next, if not the exceptionThrown method of the parent
is called in order to see if there is another surrounding try-block with a adequate catch state-
ment. The alphabet of the node is built from the alphabet of the try-block and of the alphabets of
all catch-blocks. During the build of the tree the catch statements are added with the addCatch
method which builds the map from exception to the code held in the statement in order to later
know what code to execute for a specified exception.

SimulationNode

+takeTransition()

+generateAlphabet()

+isFinished()

+collectTransitions(): List<SimulationNode>

+collectParTransitions(): List<ParTransition>

+childIsFinished(child:SimulationNode)

+breakTransitionTaken()

+releaseTransitions()

+stopCalled()

+exceptionThrown(exc:ThrowNode)

+createSimHighlighting(resource:IResource,document:IDocument,isPalt:boolean)

ThrowNode TryNode

+addCatch(ca:SimulationNode,exc:String)

Figure 6.6: The additional classes for the exception handling

6.2.4 Relabeling

The next addition to the MoDeST language is the one presented in 6.1.3. The three relabeling
constructs are always placed before a sequential process that is the scope of the relabeling. For
this reason the only class in which anything is done about relabeling is the SequentialProcess
class.
For the extend construct the extendAlphabet method is called which adds the actions in the
extend statement to list which is by turn added to the alphabet in the generateAlphabet
method. This results in disabled parallel transitions if the process doesn’t generate transitions
with these actions.
For the hide construct the hideAlphabet method is called which saves the actions in the hide
statement in a list which is then removed from the alphabet in the generateAlphabet method.
Since these actions are not in the alphabet anymore the synchronization ignores them.

41

6 Step simulation

For the relabel construct the addRelabeling method is called which generates a mapping
from the old actions to the new ones. In the generateAlphabetmethod this mapping is applied
to the generated alphabet. In the collectParTransitionsmethod the transitions collected are
relabeled by a call of the relabel method which applies the mapping to the transitions.

6.2.5 palt, guards and assignments

The last addition to complete the MoDeST language is the one presented in 6.1.4. Since guards
can be placed in front of every process a guard attribute was added in the SimulationNode
class and is set in the constructor during the pass of the tree walker (c.f. 3.3) and presented to
the user with the transitions.
Assignments occur either in conjunction with a MoDeST action or in the context of a palt
construct. Therefore an assignment attribute was placed in the ActionNode class to offer a rep-
resentation of the assignments during the transition presentation. Assignments occurring in a
palt construct are handled in the PaltTransition classes discussed next with the representa-
tion of the palt construct.
This representation is implemented in the PaltNode class. The alphabet is generated from the
action guarding the palt (when present) and from all weighed alternatives. When collecting
transitions in a non parallel context the PaltNode instance returns itself and when taken it calls
the takeTransition method of the action guard that is presented beforehand to the user as ac-
tion of the transition. This done the probabilistic transitions are presented to the user after being
obtained with the getPaltTransitions method. These PaltTransitions now display their
respective probability and the assignment to occur when taken. These probabilistic transitions
are to be taken before any other transition since they have to happen in an atomic way (c.f.
6.2). When transitions are collected in a parallel context the PaltTransitions are added to
the created ParTransition with the addPaltTransitionList of the ParTransition class.
Here too the atomicity has to be respected, thus when two ParTransitions have probabilistic
transitions, those transitions are merged in a multiplicative way as shown in 6.3. This can lead
to a deadlock since the twigs are all presented to the user as the MoToR simulator would also
choose the twig in a probabilistic fashion, without looking forward for enabledness of the next
action to be chosen.

6.2.6 Backtracking

As an extra a backtracking system was implemented for the simulation. This gives the opportu-
nity to go back one or more steps by simply clicking a button with the mouse. This system not
only allows to go back some steps, but also to go forward again and thus to redo some of the
undone steps.
Since the simulation doesn’t build on a state automaton model but is based on a consumption
model it is hard to go back to a previous state. The only state easily obtained is the starting
state. By remembering the steps taken one can access a previous state by redoing some of the

42

6.2 The simulation implementation

SimulationNode

+takeTransition()

+generateAlphabet()

+isFinished()

+collectTransitions(): List<SimulationNode>

+collectParTransitions(): List<ParTransition>

+childIsFinished(child:SimulationNode)

+breakTransitionTaken()

+releaseTransitions()

+stopCalled()

+exceptionThrown(exc:ThrowNode)

+createSimHighlighting(resource:IResource,document:IDocument,isPalt:boolean)

PaltNode

+getWeightSum(): double

+getPaltTransitions(): List<PaltTransition>

PaltTransition

+getPAlternatives(): List<SimulationNode>

+getProbability(): double

Figure 6.7: The additional classes for handling probabilistic transitions

Figure 6.8: The step simulation View with the backtracking arrows

43

6 Step simulation

steps beginning at the starting state. Therefore all transitions taken are stored in a list in the
SimulationView class in an attribute called choiceStack that holds all transitions taken so
far in the respective order. When the back or forward actions are called by clicking the arrows in
the simulation View, the back or forward methods of the SimulationView class manage the
actual state reset and the restoring of the looked for state by redoing the transitions saved in the
choiceStack. Here should be mentioned that the probabilistic transitions are atomic and the
probabilistic choice of one of these transitions can’t be undone alone.

44

7 Extension points used

After the presentation of the complete implementation, this chapter will present the extension
points used during the design of the MoDeST plugin. These extension points [7, 8] are the
predefined entry points of new functionality for Eclipse. Since Eclipse is completely plugin
based a concept was needed in order to get the different plugins working together. Extension
points build the base of this working together. They are defined in the plugin.xml file of the
plugin which offers a functionality corresponding to a specified extension point. This is the
way (and the only one) Eclipse knows how a plugin is supposed to extend the already existing
functionality of Eclipse. This is also why the plugin.xml file plays such a crucial role in the
interaction between a plugin and Eclipse.
In order to simplify the access to the MoDeST plugin, in the following a reference of the used
extension points is shown. First the ones for the modesteditor.core plugin are presented
before coming to the points of the modesteditor.launch plugin.

7.1 modesteditor.core

7.1.1 org.eclipse.ui.editors

The org.eclipse.ui.editors extension point registers a new editor for an Eclipse file object.
In this way Eclipse knows that it has to start the custom editor when editing a file with the
specified extension. In the following the definition of the extension point is presented:

<extension
point="org.eclipse.ui.editors">

<editor
name="Modest Editor"
icon="icons/file.gif"
extensions="modest"
contributorClass="modesteditor.core.ModestActionContributor"
class="modesteditor.core.ModestEditor"
id="ModestEditor">

</editor>
</extension>

Here with the id ModestEditor and the implementing class modesteditor.core.ModestEditor.
The Editor support files with the following extensions: modest. The name of the editor is

45

7 Extension points used

specified in the name tag as seen above.

7.1.2 org.eclipse.core.filebuffers.documentSetup

The org.eclipse.core.filebuffers.documentSetup extension point registers a docu-
ment setup participant that is involved during the initialization process of a text file buffer for
a file with the specified extension. In the following the definition of the extension point is pre-
sented:

<extension
id="ModestDocumentSetupParticipant"
name="Modest plugin documentSetupParticipant"
point="org.eclipse.core.filebuffers.documentSetup">

<participant
extensions="modest"
class="modesteditor.core.ModestDocumentSetupParticipant">

</participant>
</extension>

The class modesteditor.core.ModestDocumentSetupParticipant is registered as a setup partici-
pant for the file extension modest.

7.1.3 org.eclipse.ui.preferencePages

The org.eclipse.ui.preferencePages extension point allows to register new preference
pages in the common preference dialog box of Eclipse. It further allows to specify a name for
the page which appears in the list of preferences and a category if there should be more then one
page for some subject. In the following the definition of the extension point is presented:

<extension
point="org.eclipse.ui.preferencePages">

<page
name="MoDeST"
class="modesteditor.core.preferences.ModestEditorPreferencePage"
id="modesteditor.core.ModestEditorPreferencePage">

</page>
</extension>

The name of the preference page is given as MoDeST . The implementing class is defined
as modesteditor.core.preferences.ModestEditorPreferencePage and the id is set to modestedi-
tor.core.ModestEditorPreferencePage, this will be significant later on, when other preference
pages are set to be subpages of the main preference page defined with this extension point.

46

7.2 modesteditor.launch

7.1.4 org.eclipse.ui.views

The org.eclipse.ui.views extension point allows to register new Views for the Eclipse
workbench. In the definition is already specified which name the View will have and also where
to find an icon for this View. Further it is possible to define categories if some Views shall be
bundled subjectwise. In the following the definition of the extension point is presented:

<extension
point="org.eclipse.ui.views">

<category
id="modesteditor.core"
name="MoDeST">

</category>
<view
id="modesteditor.core.SimulationView"
name="Step Simulation"
icon="icons/MoDeST.png"
category="modesteditor.core"
class="modesteditor.core.stepsimulation.SimulationView">

</view>
</extension>

First a new category for the Views originating from the MoDeST plugins is defined. The
then defined View is given an id and is named Step Simulation. The icon of the View is set to
icons/MoDeST.png and the class representing the View is set to modesteditor.core.stepsimulation.
SimulationView.

7.2 modesteditor.launch

7.2.1 org.eclipse.ui.preferencePages

This extension point was seen before and is used to register a new preference page for the
modesteditor.launch plugin. In the following the definition of the extension point is pre-
sented:

<extension
point="org.eclipse.ui.preferencePages">
<page
name="Run"
category="modesteditor.core.ModestEditorPreferencePage"
class="modesteditor.launch.ui.ModestLaunchPreferencePage"
id="modesteditor.launch.ModestLaunchPreferencePage">

47

7 Extension points used

</page>
</extension>

The name of the preference page is set to Run to symbolize the launch relevant character of
the preference page. The other important definition is the class tag, which is set to modestedi-
tor.core.ModestEditorPreferencePage. In this way the defined preference page will be a subpage
of of the main MoDeST preference page that was defined earlier.

7.2.2 org.eclipse.debug.core.launchConfigurationTypes

The org.eclipse.debug.core.launchConfigurationTypes extension point provides a con-
figurable mechanism for launching applications. In the definition the modes in which the con-
figurationType can be run are specified and it is given a name. In the following the definition of
the extension point is presented:

<extension
point="org.eclipse.debug.core.launchConfigurationTypes">

<launchConfigurationType
delegate="modesteditor.launch.ModestLaunchDelegate"
id="modesteditor.launch.ModestLaunchType"
modes="run"
name="Modest"/>

</extension>

In this LaunchConfigurationType only the modes run are defined. For this configuration type
the delegate modesteditor.launch.ModestLaunchDelegate is set, so that this class will be used
to run this configuration type.

7.2.3 org.eclipse.debug.ui.launchConfigurationTabGroups

The org.eclipse.debug.ui.launchConfigurationTabGroups extension point provides a
mechanism for contributing a group of tabs to the launch configuration dialog for a type of
launch configuration. This dialog is where the actual arguments for the starting of the external
programs is put. It also manages to some extend the options of the external programs. In the
following the definition of the extension point is presented:

<extension
point="org.eclipse.debug.ui.launchConfigurationTabGroups">

<launchConfigurationTabGroup
class="modesteditor.launch.ui.ModestLaunchTabGroup"
id="modesteditor.launch.ui.ModestLaunchTabGroup"
type="modesteditor.launch.ModestLaunchType"/>

</extension>

48

7.2 modesteditor.launch

The tab group is specified in the class modesteditor.launch.ui.ModestLaunchTabGroup. It is
applicable for the previously defined type modesteditor.launch.ModestLaunchType.

7.2.4 org.eclipse.debug.ui.launchConfigurationTypeImages

The org.eclipse.debug.ui.launchConfigurationTypeImages extension point provides
a way to associate an image with a launch configuration type. In the following the definition of
the extension point is presented:

<extension
point="org.eclipse.debug.ui.launchConfigurationTypeImages">

<launchConfigurationTypeImage
configTypeID="modesteditor.launch.ModestLaunchType"
icon="icons/launch.gif"
id="modesteditor.launch.ModestLaunchTypeImage"/>

</extension>

The image associated to the already defined configuration type modesteditor.launch.ModestLaunch
Type is set in the icon tag to icons/launch.gif.

49

8 Conclusion

After the short introduction, a guide of the plugin features was presented. This guide shall help
to give all users of the plugin and the readers of this thesis an easier access to MoDeST and the
plugin. In the manual many pictures were used to ease the recognition of the handled concepts
and features during the work with the plugin. Next a short overview of the parsing system used
in the plugin was given before showing how this system fits into the editor of the plugin. Not
only parsing was presented in the editor chapter but also the error checking features and how
the editor eases the work for programmers were pictured. In the next chapter the integration of
the plugin in the launch framework was presented, this shall help to use the existing MoDeST
tools together with Eclipse since not all tools were reproduced in the Eclipse context. Thereafter
the key feature of the plugin, the step simulation of MoDeST was shown in detail. Not only
the practical part was analyzed but also the theory standing behind was explained. Something
similar already existed with the FSNS interface of the MoToR tool, but the simulation in Eclipse
has many advantages for the user. The main advantage is probably that the user actually can see
which code the simulation is executing. Finally in order to give a good overview to other Eclipse
developers a reference of the used extension points was shown in the last chapter. Some further
documentation such as the Javadoc documentation of the code can be found on the website of
the plugin [14]. The update site for the installation of the plugin can also be found there.
In the further development it should be possible to add some more language specific features to
the plugin. The next step could be one of two possibilities. The first one being, the discrete event
simulation as it is done in MoToR is implemented in Eclipse. This would facilitate the use of the
plugin as all features are bundled in one place. Possibly the new implementation could alleviate
some of the drawbacks that exist currently in MoToR such as the lack of urgency constraints.
The other possibility would be to create an interface between the Eclipse plugin and the Moebius
[15] tool. Since for the time being Moebius is the backend for simulation of the MoToR tool
it would be possible with such an interface to use the MoToR simulation out of Eclipse. This
way seems feasible since Moebius is also written in Java and could possibly be incorporated into
an Eclipse plugin. A possible problem could be that Moebius isn’t open source and the task to
create the interface could be a non-trivial project.

50

Bibliography

[1] ANTLR parser generator homepage: http://www.antlr.org.

[2] ANTLR plugin homepage: http://antlreclipse.sourceforge.net/.

[3] Henrik C. Bohnenkamp, Holger Hermanns, Ric Klaren, Angelika Mader, and Yaroslav S.
Usenko. Synthesis and stochastic assessment of schedules for lacquer production. In
QEST, pages 28–37, 2004.

[4] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. MoDeST
– a modelling and description language for stochastic timed systems. In Luca de Alfaro
and Stephen Gilmore, editors, PAPM-PROBMIV, volume 2165 of LNCS, pages 87–104.
Springer, 2001.

[5] Pedro R. D’Argenio, Holger Hermanns, Joost-Pieter Katoen, and Ric Klaren. MoDeST: A
compositional modeling formalism for hard and softly timed systems. 2005.

[6] Eclipse homepage: http://www.eclipse.org.

[7] Definition of an eclipse extension point:
http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/
guide/arch.htm.

[8] Eclipse extension point reference:
http://help.eclipse.org/help32/topic/org.eclipse.platform.doc.isv/
reference/extension-points/index.html.

[9] Definition of an eclipse outline view:
http://help.eclipse.org/help32/org.eclipse.platform.doc.user/
concepts/coutline.htm.

[10] Dejan Glozic and Dorian Birsan. How To Keep Up To Date:
http://www.eclipse.org/articles/Article-Update/
keeping-up-to-date.html.

[11] Chris Grindstaff. How to use the JFace Tree Viewer:
http://www.eclipse.org/articles/Article-TreeViewer/
TreeViewerArticle.htm.

51

Bibliography

[12] Jakarta commons homepage: http://jakarta.apache.org/commons/.

[13] Java homepage: http://java.sun.com.

[14] Modest editor plugin. http://depend.cs.uni-sb.de/index.php?446.

[15] Möbius homepage: http://www.mobius.uiuc.edu/.

[16] MoToR homepage: http://fmt.cs.utwente.nl/tools/motor/.

[17] Joe Szurszewski. We Have Lift-off: The Launching Framework in Eclipse:
http://www.eclipse.org/articles/Article-Launch-Framework/launch.html.

52

	Introduction
	A step-by-step guide through the plugin features
	The editor
	Plugin preferences
	External programs
	Simulating MoDeST in Eclipse
	Short introduction to MoDeST
	The step simulation

	Installation

	Parsing MoDeST
	Lexer and Parser
	The outline Walker
	The simulation Walker

	The editor
	The main classes
	ModestEditorPlugin
	ModestEditor

	Syntax highlighting and content assistance
	Syntax highlighting
	Content assistance

	Error markup
	Outline
	ModestContentOutlinePage
	Models

	Editor Preferences
	Default initialization
	ModestPreferencePage

	Launch framework integration
	The main classes
	ModestLaunchPlugin
	ModestLaunchDelegate

	Launch Preferences
	ModestLaunchPreferencePage
	ModestLaunchTab

	Step simulation
	The simulation theory
	The MoDeST core
	Processes and exception handling
	Relabeling
	palt, guards and assignments

	The simulation implementation
	The framework
	The MoDeST core
	Processes and exception handling
	Relabeling
	palt, guards and assignments
	Backtracking

	Extension points used
	modesteditor.core
	org.eclipse.ui.editors
	org.eclipse.core.filebuffers.documentSetup
	org.eclipse.ui.preferencePages
	org.eclipse.ui.views

	modesteditor.launch
	org.eclipse.ui.preferencePages
	org.eclipse.debug.core.launchConfigurationTypes
	org.eclipse.debug.ui.launchConfigurationTabGroups
	org.eclipse.debug.ui.launchConfigurationTypeImages

	Conclusion

