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Abstract
Interactive Markov chains (IMC) are compositional behavioral models extending both labeled
transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed
to compositionality properties - with effective verification algorithms and tools - owed to Markov
properties. Thus far however, IMC verification did not consider compositionality properties, but
considered closed systems. This paper discusses the evaluation of IMC in an open and thus
compositional interpretation. For this we embed the IMC into a game that is played with the
environment. We devise algorithms that enable us to derive bounds on reachability probabilities
that are assured to hold in any composition context.
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1 Introduction

With the increasing complexity of systems and software reuse, component based develop-
ment concepts gain more and more attention. In this setting developers are often facing the
need to develop a component with only partial information about the surrounding compo-
nents at hand, especially when relying on third-party components to be inter-operated with.
This motivates verification approaches that ensure the functionality of a component in an
environment whose behavior is unknown or only partially known. Compositional verification
approaches aim at methods to prove guarantees on isolated components in such a way that
when put together, the entire system’s behavior has the desired properties based on the
individual guarantees.

The assurance of reliable functioning of a system relates not only to its correctness, but
also to its performance and dependability. This is a major concern especially in embed-
ded system design. A natural instantiation of the general component-based approach in the
continuous-time setting are interactive Markov chains [23]. Interactive Markov chains (IMC)
are equipped with a sound compositional theory. IMC arise from classical labeled transi-
tion systems by incorporating the possibility to change state according to a random delay
governed by some negative exponential distribution. This twists the model to one that is
running in continuous real time. State transitions may be triggered by delay expirations,
or may be triggered by the execution of actions. By dropping the new type of transi-
tions, labeled transition systems are regained in their entirety. By dropping action-labeled
transitions instead, one arrives at one of the simplest but also most widespread class of
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performance and dependability models, continuous-time Markov chains (CTMCs). IMC
have a well-understood compositional theory, rooted in process algebra [3], and are in use
as semantic backbones for dynamic fault trees [6], architectural description languages [5, 8],
generalized stochastic Petri nets [24] and Statemate [4] extensions, and are applied in a large
spectrum of practical applications, ranging from networked hardware on chips [15] to water
treatment facilities [20] and ultra-modern satellite designs [16].

In recent years, various analysis techniques have been proposed [18, 26, 22, 25, 31, 19]
for IMC. The pivotal verification problem considered is that of time-bounded reachability.
It is the problem to calculate or approximate the probability that a given state (set) is
reached within a given deadline. However, despite the fact that IMC support compositional
model generation minimization very well, the analysis techniques considered thus far are
not compositional. They are all bound to the assumption that the analyzed IMC is closed,
i.e. does not depend on interaction with the environment. Technically, this is related to
the maximal-progress assumption governing the interplay of delay and action execution of
an IMC component: Internal actions are assumed to happen instantaneously and therefore
take precedence over delay transitions while external actions do not. External actions are
the process algebraic means for interaction with other components. Remarkably, in all the
published IMC verification approaches, all occurring actions are assumed to be internal
(respectively internalized by means of a hiding operator prior to analysis).

In this paper, we instead consider open IMC, where the control over external actions is
in the hands of and possibly delayed by an environment. The environment can be thought
of as summarizing the behavior of one or several interacting components. As a consequence,
we find ourselves in the setting of a timed game, where the environment has the (timed)
control over external actions, while the IMC itself controls choices over internal actions. The
resulting game turns out to be remarkably difficult, owed to the interplay of timed moves
with external and internal moves of both players.

Concretely, assume we are given an IMC C which contains some internal non-deterministic
transitions and also offers some external actions for synchronization to an unknown envi-
ronment. Our goal is to synthesize a scheduler controlling the internal transitions which
maximizes the probability of reaching a set G of goal states, in time T no matter what and
when the environment E decides to synchronize with the external actions. The environment
E ranges over all possible IMC able to synchronize with the external actions of C.

To get a principal understanding of the complications faced, we need to consider a
restricted setting, where C does not enable internal and external transitions at the same
state. We provide an algorithm which approximates the probability in question up to a
given precision ε > 0 and also computes an ε-optimal scheduler. The algorithm consists of
two steps. First, we reduce the problem to a game where the environment is not an IMC
but can decide to execute external actions at non-deterministically chosen time instances.
In a second step, we solve the resulting game on C using discretization. Our discretization is
based on the same approach as the algorithm of [31]. However, the algorithm as well as its
proof of correctness is considerably more complicated due to presence of non-deterministic
choices of the second player. We finally discuss what happens if we allow internal and
external transitions to be enabled at the same time.
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Example. To illustrate the concepts by an exam-
ple application, we can consider a variant of the fault-
tolerant workstation cluster [21] depicted on the right.
The overall system consists of two sub-clusters connected
via a backbone; each of them contains N workstations.
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Any component can fail and then needs to be repaired to become operational again. There
is a single repair unit (not depicted) which must take decisions what to repair next when
multiple components are failed. The entire system can be modelled using the IMC composi-
tion operators [21], but we are now also in the position to study a partial model, where some
components, such as one of the switches, are left unspecified. We seek for the optimal repair
schedule regardless of how the unknown components are implemented. It can answer ques-
tions such as: “What is the worst case probability to hit a state in which premium service is
not guaranteed within T time units?” with premium service only being guaranteed if there
are at least N operational workstations connected to each other via operational switches.

Our contribution. We investigate the problem of compositionally verifying open IMC.
In particular, we introduce the problem of synthesizing optimal control for time-bounded
reachability in an IMC interacting in an unknown environment, provided no state enables
internal and external transition. Thereafter, we solve the problem of finding ε-optimal
schedulers using the established method of discretization, give bounds on the size of the
game to be solved for a given ε and thus establish upper complexity bound for the problem.

Related work. Model checking of open systems has been proposed in [27]. The synthesis
problem is often stated as a game where the first player controls a component and the
second player simulates an environment [30]. There is a large body of literature on games
in verification, including recent surveys [1, 13]. Stochastic games have been applied to
e.g. concurrent program synthesis [12] and for collaboration strategies among compositional
stochastic systems [14]. Although most papers deal with discrete time games, lately games
with stochastic continuous-time have gained attention [7, 29, 9, 10]. Technically, some of
the games we consider in the present paper exploit special cases of the games considered
in [7, 10]. However, both papers prove decidability only for qualitative reachability problems
and do not discuss compositionality issues.

The time-bounded reachability problem for closed IMC has been studied in [22, 31] and
compositional abstraction techniques to compute it are developed in [25]. In the closed
interpretation, IMC have some similarities with continuous-time Markov decision processes,
CTMDPs. Algorithms for time-bounded reachability in CTMDPs and corresponding games
are developed in [2, 9, 29]. A numerically stable algorithm for time-bounded properties for
CTMDPs is developed in [11].

2 Interactive Markov Chains

In this section, we introduce the formalism of interactive Markov chains together with the
standard way to compose them. After giving the operational interpretation for closed sys-
tems, we define the fundamental problem of our interest, namely we define the value of
time-bounded reachability and introduce the studied problems.

We denote by N, N0, R>0, and R≥0 the sets of natural numbers, natural numbers with
zero, positive real numbers and non-negative real numbers, respectively.

I Definition 1 (IMC). An interactive Markov chain (IMC) is a tuple C = (S,Actτ , ↪→, , s0)
where S is a finite set of states, Actτ is a finite set of actions containing a designated internal
action τ , s0 ∈ S is an initial state,

↪→ ⊆ S × Actτ × S is an interactive transition relation, and
 ⊆ S × R>0 × S is a Markovian transition relation.

Elements of Act := Actτ \ {τ} are called external actions. We write s a
↪→ t whenever

(s, a, t) ∈ ↪→, and further succe(s) = {t ∈ S | ∃a ∈ Act : s a
↪→ t} and succτ (s) = {t ∈ S |
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s
τ
↪→ t}. Similarly, we write s λ t whenever (s, λ, t) ∈  where λ is called a rate of the

transition, and succM (s) = {t ∈ S | ∃λ : s λ t}. We assume w.l.o.g. that for each pair
of states s and t, there is at most one Markovian transition from s to t. We say that an
external, or internal, or Markovian transition is available in s if succe(s) 6= ∅, or succτ (s) 6= ∅,
or succM (s) 6= ∅, respectively.

We also define a total exit rate function E : S → R≥0 which assigns to each state the
sum of rates of all outgoing Markovian transitions, i.e. E(s) =

∑
s
λ
 t

λ where the sum is
zero if succM (s) is empty. Furthermore, we define a probability matrix P(s, t) = λ/E(s) if
E(s) 6= 0 and s λ t; and P(s, t) = 0, otherwise.

IMC are well suited for compositional modeling, where systems are built out of smaller
ones using composition operators. Parallel composition and hiding operators are central to
a modeling style, where parallel components synchronize using shared action, and further
synchronization can be prohibited by hiding (i.e. internalizing) some actions. IMC employ
the maximal progress assumption: Internal actions take precedence over the advance of
time [23].

I Definition 2 (Parallel composition). For IMC C1 = (S1,Actτ1 , ↪→1, 1, s01) and C2 =
(S2,Actτ2 , ↪→2, 2, s02) and a synchronization alphabet A ⊆ Act1 ∩ Act2, the parallel com-
position C1 ‖A C2 is the IMC C1 = (S1 × S2,Actτ1 ∪Actτ2 , ↪→, , (s01, s02)) where ↪→ and  
are defined as the smallest relations satisfying

s1
a
↪→ s′1 and s2

a
↪→ s′2 and a ∈ A implies (s1, s2) a

↪→ (s′1, s′2),
s1

a
↪→ s′1 and a 6∈ A implies (s1, s2) a

↪→ (s′1, s2) for each s2 ∈ S2,
s2

a
↪→ s′2 and a 6∈ A implies (s1, s2) a

↪→ (s1, s
′
2) for each s1 ∈ S1,

s1
λ s′1 implies (s1, s2) λ (s′1, s2) for each s2 ∈ S2, and

s2
λ s′2 implies (s1, s2) λ (s1, s

′
2) for each s1 ∈ S1.

I Definition 3 (Hiding). For an IMC C = (S,Actτ , ↪→, , s0) and a hidden alphabet A ⊆
Act, the hiding C�A is the IMC (S,Actτ \ A, ↪→′, , s0) where ↪→′ is the smallest relation
satisfying for each s a

↪→ s′ that a ∈ A implies s τ
↪→ ′s′, and a 6∈ A implies s a

↪→ ′s′.

The analysis of IMC has thus far been restricted to closed IMC [18, 26, 22, 25, 31,
19]. In a closed IMC, external actions do not appear as transition labels (i.e. ↪→ ⊆ S ×
{τ} × S). In practice, this is achieved by an outermost hiding operator �Act closing the
composed system. Non-determinism among internal τ transitions is resolved using a (history-
dependent) scheduler σ [31].

Let us fix a closed IMC C = (S,Actτ , ↪→, , s0). The IMC C under a scheduler σ moves
from state to state, and in every state may wait for a random time. This produces a run
which is an infinite sequence of the form s0 t0 s1 t1 · · · where sn is the n-th visited state and
tn is the time spent there. After n steps, the scheduler resolves the non-determinism based
on the history h = s0 t0 · · · sn−1 tn−1 sn as follows.

I Definition 4 (Scheduler). A scheduler1 for an IMC C = (S,Actτ , ↪→, , s0) is a measur-
able2 function σ : (S × R≥0)∗ × S → S such that for each history h = s0 t0 s1 · · · sn with
succτ (sn) 6= ∅ we have σ(h) ∈ succτ (sn). The set of all schedulers for C is denoted by S(C).

The decision of the scheduler σ(h) determines tn and sn+1 as follows. If succτ (sn) 6= ∅,
then the run proceeds immediately, i.e. in time tn := 0, to the state sn+1 := σ(h). Otherwise,

1 For the sake of simplicity, we only consider deterministic schedulers in this paper.
2 More precisely, σ−1(s) is measurable in the product topology of the discrete topology on S and the
Borel topology on R≥0.
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if succτ (sn) = ∅, then only Markovian transitions are available in sn. In such a case, the
run moves to a randomly chosen next state sn+1 with probability P(sn, sn+1) after waiting
for a random time tn chosen according to the exponential distribution with the rate E(sn).

One of the fundamental problems in verification and performance analysis of continu-
ous-time stochastic systems is the time-bounded reachability. Given a set of goal states
G ⊆ S and a time bound T ∈ R≥0, the value of time-bounded reachability is defined as
supσ∈S(C) PσC

[
♦≤TG

]
where PσC

[
♦≤TG

]
denotes the probability that a run of C under the

scheduler σ visits a state of G before time T . The pivotal problem in the algorithmic analysis
of IMC is to compute this value together with a scheduler which achieves the supremum.
As the value is not rational in most cases, the aim is to provide an efficient approximation
algorithm and compute an ε-optimal scheduler. The value of time-bounded reachability can
be approximated up to a given error tolerance ε > 0 in time O(|S|2 ·(λT )2/ε) [28], where λ is
the maximal rate of C, and the procedure also yields an ε-optimal scheduler. We generalize
both the notion of the value as well as approximation algorithms to the setting of open IMC,
i.e. those that are not closed, and motivate this extension in the next section.

3 Compositional Verification

In this section we turn our attention to the central questions studied in this paper. How
can we decide how well an IMC component C performs (w.r.t. time-bounded reachability)
when acting in parallel with an unknown environment? And how to control the component
to establish a guarantee as high as possible?

Speaking thus far in vague terms, this amounts to finding a scheduler σ for C which
maximizes the probability of reaching a target set G before T no matter what environment
E is composed with C. As we are interested in compositional modeling using IMC, the
environments are supposed to be IMC with the same external actions as C (thus resolving
the external non-determinism of C). We also need to consider all resolutions of the internal
non-determinism of E as well as the non-determinism arising from synchronization of C and
E using another scheduler π. So we are interested in the following value:

sup
σ

inf
E,π
P[G is reached in composition of C and E before T using σ and π].

Now, let us be more formal and fix an IMC C = (S,Actτ , ↪→, , s0). For a given
environment IMC E with the same action alphabet Actτ , we introduce a composition
C(E) = (C ‖Act E)�Act where all open actions are hidden, yielding a closed system.
Note that the states of C(E) are pairs (c, e) where c is a state of C and e is a state of
E. We consider a scheduler σ of C and a scheduler π of C(E) respecting σ on internal
actions of C. We say that π respects σ, denoted by π ∈ S(C(E), σ), if for every history
h = (c0, e0) t0 · · · tn−1(cn, en) of C(E) the scheduler π satisfies one of the following condi-
tions:

π(h) = (c, e) where cn a
↪→ c and en a

↪→ e (π resolves synchronization)
π(h) = (cn, e) where en τ

↪→ e (π chooses a move in the environment)
π(h) = (σ(hC), en) where hC = c0t0 · · · tn−1cn (π chooses a move in C according to σ).

Given a set of goal states G ⊆ S and a time bound T ∈ R≥0, the value of compositional
time-bounded reachability is defined as

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
(∗)
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where ENV denotes the set of all IMC with the action alphabet Actτ and GE = G×SE where
SE is the set of states of E. As for the closed IMC, our goal is to efficiently approximate this
value together with a maximizing scheduler. Before we present an approximation algorithm
based on discretization, we illustrate some of the effects of the open system perspective.

do

done do’ fix

fail fast

?

1

1 τ

τ

1

20

10

1

interrupt

Example. The figure on the right depicts
an IMC on which we approximate the value (∗)
for T = 2 and G = {done}. From the initial
state do, the system may go randomly either to
the target done or to state fail. Concurrently,
an external action interrupt may switch the run
to state ?, where the scheduler σ chooses between two successors (1) state fast allowing fast
but risky run to the target and (2) state fix that guarantees reaching the target but takes
longer time. The value (∗) is approximately 0.47 and the optimal scheduler goes to fix only if
there are more than 1.2 minutes left. Note that the probability of reaching the target in time
depends on when the external action interrupt is taken. The most adversarial “scheduler” of
the environment executes interrupt after 0.8 minutes from the start.

Results. We now formulate our main result concerning efficient approximation of the
value of compositional time-bounded reachability. In fact, we provide an approximation
algorithm for a restricted subclass of IMC defined by the following two assumptions:

I Assumption 1. Each cycle contains a Markovian transition.

This assumption is standard over all analysis techniques published for IMC [18, 26, 22, 25,
31, 19]. It implies that the probability of taking infinitely many transitions in finite time,
i.e. of Zeno behavior, is zero. This is a rather natural assumption and does not restrict the
modeling power much, since no real system will be able to take infinitely many transitions
in finite time anyway. Furthermore, the assumed property is a compositional one, i.e. it is
preserved by parallel composition and hiding.

I Assumption 2. Internal and external actions are not enabled at the same time, i.e. for
each state s, either succe(s) = ∅ or succτ (s) = ∅.

Note that both assumptions are met by the above mentioned example. However, Assump-
tion 2 is not compositional; specifically, it is not preserved by applications of the hiding
operator. A stronger assumption would require the environment not to trigger external
actions in zero time after a state change. This is indeed implied by Assumption 2 which
basically asks internal transitions of the component to be executed before any external ac-
tions are taken into account.3 In fact, the reverse precedence cannot be implemented in real
systems, if internal actions are assumed to be executed without delay. Any procedure imple-
mented in C for checking the availability of external actions will involve some non-zero delay
(unless one resorts to quantum effects). From a technical point of view, lifting Assumption 2
makes the studied problems considerably more involved; see Section 6 for further discussion.

I Theorem 5. Let ε > 0 be an approximation bound and C = (S,Actτ , ↪→, , s0) be an
IMC satisfying Assumptions 1 and 2. Then one can approximate the value of compositional
time-bounded reachability of C up to ε and compute an ε-optimal scheduler in time O(|S|2 ·
(λT )2/ε), where λ is the maximal rate of C and T is the reachability time-bound.

3 To see this one can construct a weak simulation relation between a system violating Assumption 2 and
one satisfying it, where any state with both internal and external transitions is split into two: the first
one enabling the internal transitions and a new τ to the second one only enabling the external ones.
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In the remainder of the paper, we prove this theorem and discuss its restrictions. First,
we introduce a new kind of real-time games, called CE games, that are played on open
IMC. Then we reduce the compositional time-bounded reachability of C to time-bounded
reachability objective in the CE game played just on the component C (see Proposition 6).
In Section 5, we show how to reduce, using discretization, the time-bounded reachability
in CE games to step-bounded reachability in discrete-time stochastic games (see Proposi-
tion 8), that in turn can be solved using simple backward propagation. Finally, we show,
in Proposition 9, how to transform optimal strategies in the discretized stochastic games to
ε-optimal schedulers for C.

4 Game of Controller and Environment

In order to approximate (∗), the value of compositional time-bounded reachability, we turn
the IMC C into a two-player controller–environment game (CE game) G. The CE game
naturally combines two approaches to real-time systems, namely the stochastic flow of time
as present in CTMCs with the non-deterministic flow of time as present in timed automata.
The game G is played on the graph of an IMC C played by two players: con (controlling the
component C) and env (controlling/simulating the environment). In essence, con chooses
in each state with internal transitions one of them, and env chooses in each state with
external (and hence synchronizing) transitions either which of them should be taken, or a
delay te ∈ R>0. Note that, due to Assumption 2, the players control the game in disjoint
sets of states, hence G is a turn-based game. The internal and external transitions take zero
time to be execute once chosen. If no zero time transition is chosen, the delay te determined
by env competes with the Markovian transitions, i.e. with a random time sampled from
the exponential distribution with the rate E(s). We consider time-bounded reachability
objective, so the goal of con is to reach a given subset of states G before a given time T ,
and env opposes it.

Formally, let us fix an IMC C = (S,Actτ , ↪→, , s0) and thus a CE game G. A run of G is
again an infinite sequence s0 t0 s1 t1 · · · where sn ∈ S is the n-th visited state and tn ∈ R≥0
is the time spent there. Based on the history s0 t0 · · · tn−1 sn went through so far, the players
choose their moves as follows.

If succτ (sn) 6= ∅, the player con chooses a state sτ ∈ succτ (sn).
Otherwise, the player env chooses either a state se ∈ succe(sn), or a delay te ∈ R>0.
(If succe(sn) = ∅ only a delay can be chosen.)

Subsequently, Markovian transitions (if available) are resolved by randomly choosing a target
state sM according to the distribution P(sn, ·) and randomly sampling a time tM according
to the exponential distribution with rate E(sn). The next waiting time tn and state sn+1
are given by the following rules in the order displayed.

If succτ (sn) 6= ∅ and sτ was chosen, then tn = 0 and sn+1 = sτ .
If succe(sn) 6= ∅ and se was chosen, then tn = 0 and sn+1 = se.
If te was chosen then:

if succM (sn) = ∅, then tn = te and sn+1 = sn;
if te ≤ tM , then tn = te and sn+1 = sn;
if tM < te, then tn = tM and sn+1 = sM .

According to the definition of schedulers in IMC, we formalize the choice of con as a
strategy σ : (S × R≥0)∗ × S → S and the choice of env as a strategy π : (S × R≥0)∗ × S →
S ∪ R>0. We denote by Σ and Π the sets of all strategies of the players con and env,
respectively. In order to keep CE games out of Zeno behavior, we consider in Π only those



8 Verification of Open Interactive Markov Chains

strategies of the player env for which the induced Zeno runs have zero measure, i.e. the sum
of the chosen delays diverges almost surely no matter what con is doing.

Given a set of goal states G ⊆ S and a time bound T ∈ R≥0, the value of G is defined as

sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
(∗∗)

where Pσ,πG
[
♦≤TG

]
is the probability of all runs of G induced by σ and π and reaching a

state of G before time T . We now show that the value of CE game coincides with the value
of compositional time-bounded reachability.

I Proposition 6. (∗) = (∗∗), i.e.

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
= sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
Proof Idea. We start with the inequality (∗) ≥ (∗∗). Let σ ∈ Σ (= S(C)) and let us fix an
environment E together with a scheduler π ∈ S(C(E), σ). The crucial observation is that the
only purpose of the environment E (controlled by π) is to choose delays of external actions
(the delay is determined by a sequence of internal and Markovian actions of E executed
before the external action), which is in fact similar to the role of the player env in the CE
game. The only difference is that the environment E “chooses” the delays randomly as
opposed to deterministic strategies of env. However, using a technically involved argument,
we show how to get rid of this randomization and obtain a strategy π′ in the CE game
satisfying Pσ,π

′

G
[
♦≤TG

]
≤ PπC(E)

[
♦≤TGE

]
.

Concerning the second inequality (∗) ≤ (∗∗), we show that every strategy of env can
be (approximately) implemented using a suitable environment together with a scheduler
π. The idea is to simulate every deterministic delay, say t, chosen by env using a random
delay tightly concentrated around t (roughly corresponding to an Erlang distribution) that
is implemented as an IMC. We show that the imprecision of delays introduced by this
randomization induces only negligible alteration to the value. J

5 Discretization

In this section we show how to approximate the value (∗∗) of the CE game up to an arbitrarily
small error ε > 0 by reduction to a discrete-time (turn-based) stochastic game ∆.

A stochastic game ∆ is played on a graph (V, 7→) partitioned into V� ] V♦ ] V©. A play
starts in the initial vertex v0 and forms a run v0v1 · · · as follows. For a history v0 · · · vi, the
next vertex vi+1 satisfying vi 7→ vi+1 is determined by a strategy σ ∈ Σ∆ of player � if
vi ∈ V� and by a strategy π ∈ Π∆ of player ♦ if vi ∈ V♦. Moreover, vi+1 is chosen randomly
according to a fixed distribution Prob(vi) if vi ∈ V©. For a formal definition, see, e.g., [17].

Let us fix a CE game G and a discretization step δ > 0 that divides the time bound T into
N ∈ N intervals of equal length (here δ = T/N). We construct a discrete-time stochastic
game ∆ by substituting each state of G by a gadget of one or two vertices (as illustrated in
Figure 1).4 Intuitively, the game ∆ models passing of time as follows. Each discrete step
“takes” either time δ or time 0. Each step from a vertex of V© takes time δ whereas each step

4 We assume w.l.o.g. that (1) states with internal transitions have no Markovian transitions available and
(2) every state has at least one outgoing transition.This is no restriction since (1) Markovian transitions
are never taken in such states and (2) any state without transitions can be endowed with a Markovian
self-loop transition without changing the time-bounded reachability.
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Figure 1 Four gadgets for transforming a CE game into a discrete game. The upper part
shows types of states in the original CE game, the lower part shows corresponding gadgets in
the transformed discrete game. In the lower part, the square-shaped, diamond-shaped and circle-
shaped vertices belong to V�, V♦ and V©, respectively. Binary branching is displayed only in order
to simplify the figure.

from vertex of V�∪V♦ takes zero time. The first gadget transforms internal transitions into
edges of player � taking zero time. The second gadget transforms Markovian transitions
into edges of player © taking time δ where the probability p is the probability that any
Markovian transition is taken in G before time δ. The third gadget deals with states with
both external and Markovian transitions available where the player ♦ decides in vertex s in
zero time whether an external transition is taken or whether the Markovian transitions are
awaited in s for time δ. The fourth gadget is similar, but no Markovian transition can occur
and from s the play returns into s with probability 1 (see Appendix A.6 for more details).

Similarly to (∗) and (∗∗), we define the value of the discrete-time game ∆ as

sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆
[
♦#b≤NG] (∗ ∗ ∗)

where Pσ,π∆
[
♦#b≤NG] is the probability of all runs of ∆ induced by σ and π that reach G

before taking more than N steps from vertices in V©. According to the intuition above,
such a step bound corresponds to a time bound N · δ = T .

We say that a strategy is counting if it only considers the last vertex and the current count
#b of steps taken from vertices in V©. We may represent it as a function V ×{0, . . . , N} → V

since it is irrelevant what it does after more than N steps.

I Lemma 7. There are counting strategies optimal in (∗∗∗). Moreover, they can be computed
together with (∗ ∗ ∗) in time O(N |V |2).

We now show that the value (∗ ∗ ∗) of the discretized game ∆ approximates the value
(∗∗) of the CE game G and give the corresponding error bound.

I Proposition 8 (Error bound). For every approximation bound ε > 0 and discretization
step δ ≤ ε/(λ2T ) where λ = maxs∈S E(s), the value (∗ ∗ ∗) induced by δ satisfies

(∗ ∗ ∗) ≤ (∗∗) ≤ (∗ ∗ ∗) + ε.



10 Verification of Open Interactive Markov Chains

Sketch of Proof. The proof is inspired by the techniques for closed IMC [28]. Yet, there
are several new issues to overcome, caused mainly by the fact that the player env in the CE
game may choose an arbitrary real delay te > 0 (so the game is uncountably branching).
The discretized game ∆ is supposed to simulate the original CE game but restricts possible
behaviors as follows: (1) Only one Markovian transition is allowed in any interval of length
δ. (2) The delay te chosen by player ♦ (which simulates the player env from the CE game)
must be divisible by δ. We show that none of these restrictions affects the value.

ad (1) As pointed out in [28], the probability of two or more Markovian transitions occurring in
an interval [0, δ] is bounded by (λδ)2/2 where λ = maxs∈S E(s). Hence, the probability
of multiple Markovian transitions occurring in any of the discrete steps of ∆ is ≤ ε.

ad (2) Assuming that at most one Markovian transition is taken in [0, δ] in the CE game,
we reduce the decision when to take external transitions to minimization of a linear
function on [0, δ], which in turn is minimized either in 0, or δ. Hence, the optimal choice
for the player env in the CE game is either to take the transitions immediately at the
beginning of the interval (before the potential Markovian transition) or to wait for time
δ (after the potential Markovian transition). J

Finally, we show how to transform an optimal counting strategy σ : V ×{0, . . . , N} → V

in the discretized game ∆ into an ε-optimal scheduler σ in the IMC C. For every p =
s0 t0 · · · sn−1 tn−1 sn we put σ(p) = σ(sn, d(t0 + . . .+ tn−1)/δe).

I Proposition 9 (ε-optimal scheduler). Let ε > 0, ∆ be a corresponding discrete game, and
σ be induced by an optimal counting strategy in ∆, then

(∗) ≤ inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
+ ε

This together with the complexity result of Lemma 7 finishes the proof of Theorem 5.

6 Discussion

In this subsection we argue that lifting Assumption 2 makes analysis considerably more
involved as the studied game may contain imperfect information and concurrent decisions.
Let us illustrate the problems on an example.

i ?

yes

no

win

fail

λ

a

τ

τ

τ

a

Consider an IMC depicted on the right hand side.
This IMC violates Assumption 2 in its state no. Let us
fix an arbitrary environment E (controlled by π) and a
scheduler σ. Since internal transitions of E take zero
time, the environment must spend almost all the time
in states without internal transitions. Hence, E is almost surely in such a state when ? is
entered. Assume E is in a state with the action a being available. The scheduler σ wins if
he chooses the internal transition to yes since the synchronizing transition a is then taken
immediately, and fails if he chooses to proceed to no, as a (reasonable) scheduler π will now
force synchronization on action a. If, otherwise, on entering state ?, E is in a state without
the action a being available, the scheduler σ fails if he chooses yes because a (reasonable)
environment never synchronizes, and wins if he chooses no since the environment E cannot
immediately synchronize and the τ transition is taken. Note that the scheduler σ cannot
observe whether a is available in the current state of E. As this is crucial for the further
evolution of the game from state ?, the game is intrinsically of imperfect information.
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We conjecture that solving even this special case of imperfect information games is
PSPACE-hard. Yet, the complexity might only increase in the number of internal transitions
that can be taken in a row. For systems, where a bound on the length of internal transition
sequences can be assumed, this problem would then still be feasible.

Another possibility of dealing with this issue (that is also interesting on its own) is to
limit the knowledge and power of the environment. In our approach, the environment knows
the scheduler and the current state of the component and, moreover, can choose whether a
synchronizing transition, an internal transition in E, or an internal transition in C is taken.
One could consider giving some of this power either to the scheduler σ or to a third player
resolving the synchronization of C and E who is either random or non-deterministic.

7 Summary

This paper has discussed the computation of maximal timed bounded reachability for IMC
operating in an unknown IMC environment to synchronize with. All prior analysis ap-
proaches considered closed systems, implicitly assuming that external actions do happen in
zero time. Our analysis for open IMC works essentially with the opposite assumption, which
is arguably more realistic. We have shown that the resulting stochastic two-player game has
the same extremal values as a CE-game, where the player controlling the environment can
choose exact times. The latter is approximated up to a given precision by a discretization
approach. The resulting control strategy can be translated back to a scheduler of the IMC
achieving the bound.
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A Proofs

A.1 Notation and preliminaries
For the whole appendix, we fix a IMC C = (S,Actτ , ↪→, , s0) satisfying Assumptions 2
and 1, a set of goal states G, and a time bound T . Without loss of generality, we assume that
the goal states are absorbing, i.e. G ⊆ SM and for every s ∈ G we have P(s, s′) > 0 only if
s′ ∈ G. We further assume, that there are no Markovian self-loop transition. This is w.l.o.g.
since to any IMC C we can construct an equivalent IMC where intuitively each state is dupli-
cated and the Markovian self-loops are converted into a pair of transitions going from a state
s into its duplicate s′ and back from s′ into s. Formally, C′ = (S′,Actτ , ↪→′, ′, s0) where
S′ = S∪{s′ | s ∈ S}, ↪→′ = ↪→∪{(s′, a, s′′) | (s, a, s′′) ∈ ↪→}, and ′ = {(s1, r, s2), (s′1, r, s2) |
(s1, r, s2) ∈ , s1 6= s2} ∪ {(s, r, s′), (s′, r, s) | (s, r, s) ∈ }.

We denote by Sτ , Se, SM the set of states with only internal, external, and Markovian
transitions available, respectively. By Se+M we denote the set of states with both external
and Markovian transitions available. From Assumption 2 and from the maximal progress
assumption, we have S = Sτ ] Se ] SM ] Se+M . Furthermore, by λ we denote the maximal
rate of a state in C, i.e. λ = maxs∈S E(s). For the sake of readability, we will consistently
use the notions histories and strategies in the context of CE games and the notions paths
(instead of histories) and schedulers in the context of IMC. The set of all paths of a IMC C
is denoted by Paths(C), the set of all histories of a CE game G is denoted by Histories(G).
For a history h = s0t0s1t1 . . . tn−1sn, we denote by

∑
h the total time of the history, i.e.∑n−1

i=0 ti.
Let A be a finite or countably infinite set. A probability distribution on A is a function

f : A→ R≥0 such that
∑
a∈A f(a) = 1. The set of all distributions on A is denoted by D(A).

A σ-field over a set Ω is a set F ⊆ 2Ω that includes Ω and is closed under complement and
countable union. A measurable space is a pair (Ω,F) where Ω is a set called sample space
and F is a σ-field over Ω whose elements are called measurable sets. Given a measurable
space (Ω,F), we say that a function f : Ω→ R is a random variable if the inverse image of
any real interval is a measurable set. A probability measure over a measurable space (Ω,F) is
a function P : F → R≥0 such that, for each countable collection {Xi}i∈I of pairwise disjoint
elements of F , we have P

[⋃
i∈I Xi

]
=
∑
i∈I P [Xi] and, moreover, P [Ω] = 1. A probability

space is a triple (Ω,F ,P), where (Ω,F) is a measurable space and P is a probability measure
over (Ω,F). All integrals in the following text should be understood as Lebesgue integral
even when we use Riemann-like notation.

A.2 Semantics of CE games
Let us formally define the semantics of the CE game G induced by C. We define the σ-field
over the set of histories by F = σ(

⋃∞
n=0 2S0 ⊗B≥0

0 ⊗ · · · ⊗B≥0
n−1 ⊗ 2Sn) where σ(X) is the

σ-field generated from the set X, the operator ⊗ denotes product σ-field, B≥0 denotes the
Borel σ-field over the set R≥0.

A (randomizing) strategy σ of the controller is a measurable function σ : Histories(G)→
D(S) such that for each history h = s0t0 · · · tn−1sn with succτ (sn) 6= ∅ we have for each
s ∈ S that σ(h)(s) > 0 implies s ∈ succτ (sn), i.e. σ can assign positive probability only to
the internal successors of sn. A (randomizing) strategy π of the environment is a measurable
function that assigns to each history a probability measure over the measurable space (S ∪
R>0, σ(2S ∪B>0). Furthermore, for each history h = s0t0 · · · tn−1sn with succe(sn) 6= ∅ it
must hold for each s ∈ S that π(h)({s}) > 0 implies s ∈ succe(sn).
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We say that a strategy σ ∈ Σ is deterministic if for any history h it holds σ(h)(s) = 1
for some s ∈ S. Similarly, we say that a strategy π ∈ Π is deterministic if for any history h

it either holds π(h)(s) = 1 for some state s ∈ S or it holds π(h)(w) = 1 for some w ∈ R>0.
For a pair of strategies σ and π and a starting history h0 we define a Markov chain as

follows.
The state space is the set Histories with its σ-field F ;
the chain starts in the history h0, i.e. the initial measure µ0 satisfies µ0(A) = 1 if h0 ∈ A
and µ0(A) = 0, otherwise;
the chain moves according to the following rules expressed by a transition kernel Pσ,πh0

.
Let h = s0t0 · · · tn−1sn be a history. If sn ∈ Sτ , we have for any sn+1 ∈ succτ (sn)

Pσ,πh0
(h, {h0sn+1}) = σ(h)(sn+1)

If s ∈ Se, only the environment chooses the waiting time, for any A ⊆ R>0 it holds

Pσ,πh0
(h, {hwsn | w ∈ A}) = π(h)(A),

and for any sn+1 ∈ succesn it holds

Pσ,πh0
(h, {h 0 sn+1}) = π(h)({sn+1}).

If s ∈ SM , we have for each sn+1 ∈ S

Pσ,πh0
(h, {hw sn+1 | w ∈ [a, b]}) =

∫ b

a

E(sn) · e−E(sn)·x ·P(sn, sn+1)dx.

Finally, if s ∈ Se+M , the chain either takes the external transition

Pσ,πh0
(h, {h 0 sn+1}) = π(h)({sn+1}),

or it stays in the same state if the delay picked by the player envoccurs sooner than any
Markovian transition

Pσ,πh0
(h, {hw sn | w ∈ [a, b]}) =

∫
x∈[a,b]

e−E(sn)·xdπ(h),

or it takes a Markovian transition into sn+1 with probability that it occurs sooner than
the delay of the player env

Pσ,πh0
(h, {hw sn+1 | w ∈ [a, b]}) =

∫ b

a

E(sn)e−E(sn)·x ·P(sn, sn+1) · π(h)((x,∞))dx.

By Pσ,πG,h0
we denote the probability measure on the set of runs of the Markov chain

defined above. Furthermore, by Pσ,πG we denote the probability measure of the Markov
chain that starts in the initial state s0, i.e. Pσ,πG,s0 .

A.3 Value in the CE game
Some parts of proofs in this section are inspired by [28]. Let ♦≤TG denote the set of runs
that reach the set of goal states G in time T , i.e. that have a prefix h = s0t0 · · · tn−1sn such
that sn ∈ G and

∑
h ≤ T . Similarly, let ♦≤T≤kG denote the set of runs that reach the set
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of goal states in time T and in at most k non-self-loop transitions, i.e. that have a prefix
h = s0t0 · · · tn−1sn such that sn ∈ G,

∑
h ≤ T , and |{i | 0 ≤ i < n, si 6= si+1}| ≤ k. Let

v(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦≤T−tG]

vk(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦≤T−t≤k G]

denote the respective values when starting in state s with remaining time T − t.
We define a higher-order operator Ω : (S × R≥0 → [0, 1]) → (S × R≥0 → [0, 1]) that

characterizes the functions v and vk:

Ω(F )(s, t) =



0 if t > T or s ∈ Se \G
1 if t ≤ T and s ∈ G,

max
s′∈succτ (s)

F (s′, t) if t ≤ T and s ∈ Sτ \G,

A(T − t) if t ≤ T and s ∈ SM \G,
min
w≥0,

s′∈succe(s)

(
e−µw · F (s′, t+ w) +A(w)

)
} if t ≤ T and s ∈ Se+M \G,

where µ = E(s) and A(u) =
∫ u

0 µe−µx ·
∑
s′′∈S P(s, s′′) ·F (s′′, t+ x)dx. Furthermore, let us

denote by f0 : S × R≥0 → [0, 1] a constant zero function.

I Lemma 10 (k-step value). For any k ∈ N0 we have Ωk+1(f0) = vk and vk(s, ·) is a
measurable function that is continuous on [0, T ].

Proof. By induction on k. For k = 0 the zero-step value v0 is obviously 1 for s ∈ G and
t ≤ T and 0 elsewhere; hence, v0 = f0 and v0 is measurable and continuous on [0, T ].

Let k > 0 and let s ∈ S and t ∈ R≥0. If t > T , then vk(s, t) = 0 because for any σ ∈ Σ
and π ∈ Π the measure of the set ♦≤T−tG is zero For the following we assume that t ≤ T .

If s ∈ Se \ G, then also vk(s, t) = 0 because for any σ ∈ Σ and a strategy π that starts
by waiting T − t+ 1 the measure of the set ♦≤T−tG is again zero.
If s ∈ G, then obviously vk(s, t) = 1.
If s ∈ Sτ \G, we have

vk(s, t) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s [♦≤T−t≤k G]

= sup
σ∈Σ

inf
π∈Π

∑
s′∈succτ (s)

σ(s)(s′) · Pσ,πG,s 0s′ [♦
≤T−t
≤k−1G]

= sup
ρ∈D(succτ (s))

∑
s′∈succτ (s)

ρ(s′) · sup
σ∈Σρ

inf
π∈Π
Pσ,πG,s 0s′ [♦

≤T−t
≤k−1G],

where Σρ denotes the set of strategies that choose ρ for history s. The linear combination
is maximized by giving weight 1 to any maximal element, i.e.

= max
s′∈succτ (s)

sup
σ∈Σ1

s′

inf
π∈Π
Pσ,πG,s 0s′ [♦

≤T−t
≤k−1G],

where 1s′ is the Dirac distribution that assigns probability 1 to s′. By Markov property,

= max
s′∈succτ (s)

sup
σ∈Σ1

s′

inf
π∈Π
Pσ[s 0],π[s 0]
G,s′ [♦≤T−t≤k−1G],
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where σ[s 0](h) := σ(s 0 h) behaves in s′ as σ behaves in s 0 s′ and similarly for π. Finally,

= max
s′∈succτ (s)

sup
σ∈Σ

inf
π∈Π
Pσ,πG,s′ [♦

≤T−t
≤k−1G],

= max
s′∈succτ (s)

vk−1(s′, t) = Ω(vk−1)(s, t) = Ωk+1(f0)(s, t)

The function vk is obviously measurable and continuous on [0, T ].
If s ∈ SM , we have from the definition of the Markov chain and by the same arguments
as above

vk(s, t) = sup
σ∈Σ

inf
π∈Π

∫ ∞
0

µ · e−µx ·
∑

s′∈succM (s)

P(s, s′) · Pσ,πG,s x s′ [♦
≤T−t−x
≤k−1 G]dx,

=
∫ ∞

0
µ · e−µx ·

∑
s′∈succM (s)

P(s, s′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s′ [♦

≤T−t−x
≤k−1 G]dx,

=
∫ ∞

0
µ · e−µx ·

∑
s′∈succM (s)

P(s, s′) · vk−1(s′, t+ x)dx,

=
∫ T−t

0
µ · e−µx ·

∑
s′∈succM (s)

P(s, s′) · vk−1(s′, t+ x)dx

= Ω(vk−1)(s, t) = Ωk+1(f0)(s, t).

Again, the function vk is measurable and continuous on [0, T ].
Finally, if s ∈ Se+M , we need to perform a nested induction on the count n of self-loops
performed by strategy π before taking a non-self-loop transition. We denote by

vk,n(s, t) = sup
σ∈Σ

inf
π∈Πn

Pσ,πG,s [♦≤T−t≤k G],

where Πm is the set of strategies that start by assigning positive probability to waiting
at most m times before taking an external transition with probability one. We can
separate the first decision ρ of π from the rest of the strategy and interchange with σ

since σ cannot influence the first step,

= inf
ρ

sup
σ∈Σ

inf
π∈Πρ∩Πn

Pσ,πG,s [♦≤T−t≤k G]︸ ︷︷ ︸
=:vρ

k,n
(s,t)

and denote the outcome of ρ w.r.t. next k steps by vρk,n. Let n = 0. We analyze the
outcomes of deterministic decisions ρ, i.e. ρ[{s′}] = 1 for some s′ ∈ succe(s). It holds

vρk,0(s, t) = sup
σ∈Σ

inf
π∈Πρ∩Πn

Pσ,πG,s 0 s′ [♦
≤T−t
≤k−1G] = sup

σ∈Σ
inf
π∈Π
Pσ,πG,s′ [♦

≤T−t
≤k−1G] = vk−1(s′, t).

By this we obtain that vk,0 = mins′∈succe(s) vk−1(s′, t) since by randomizing over finite
number of successor one cannot achieve less then the minimum. Let n = 1. We again
start with deterministic decisions ρ. If ρ[{s′}] = 1 for some s′ ∈ succe(s), we also get
vρk,1(s, t) = vk−1(s′, t). If ρ[{w}] = 1 for some w > 0, it holds

vρk,1(s, t) = sup
σ∈Σ

inf
π∈Πρ∩Π1

(
e−µw · Pσ,πG,s w s[♦

≤T−t−w
≤k G] +
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∫ w

0
µe−µx

∑
s′∈succM (s)

P(s, s′) · Pσ,πG,s x s′ [♦
≤T−t−x
≤k−1 G]dx

)
= e−µw · sup

σ∈Σ
inf
π∈Π0

Pσ,πG,s [♦≤T−t−w≤k G] +∫ w

0
µe−µx

∑
s′∈succM (s)

P(s, s′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s′ [♦

≤T−t−x
≤k−1 G]dx

= e−µw · min
s′∈succe(s)

vk−1(s′, t+ w)+∫ w

0
µe−µx

∑
s′∈succM (s)

P(s, s′) · vk−1(s′, t+ x)dx.

We denote by ρw the deterministic decision for waiting time w > 0. Mixing the
deterministic waiting decision cannot yield better outcome than infw>0 vρwk (s, t) since∫
x>0 f(x)dρ ≥ infx>0 f(x) for any probability measure ρ over positive real numbers and
for any real measurable function f . Hence,

vk,1(s, t) = min{ min
s′∈succe(s)

vk−1(s′, t), inf
w>0

vρwk,1(s, t)}

= inf
w≥0,s′∈succe(s)

(
e−µw · vk−1(s′, t+ w) +A(w)

)
.

From the continuity of vk−1 on [0, T ] and from the fact that for any w,w′ > T we have
vk−1(s′, w) = vk−1(s′, w′) and A(w) = A(w′) the function attains minimum; it holds

= min
w≥0,s′∈succe(s)

(
e−µw · vk−1(s′, t+ w) +A(w)

)
= Ω(vk−1)(s, t) = Ωk+1(f0)(s, t).

At last, let n > 1. For deterministic decision ρ[{s′}] = 1 for some s′ ∈ succe(s), we again
get vρk,n(s, t) = vk−1(s′, t). If ρ[{w}] = 1 for some w > 0, we get

vρk,n(s, t) = e−µw · sup
σ∈Σ

inf
π∈Πn−1

Pσ,πG,s [♦≤T−t−w≤k G] +∫ w

0
µe−µx

∑
s′∈succM (s)

P(s, s′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG,s′ [♦

≤T−t−x
≤k−1 G]dx

= e−µw · vk,n−1(s, t+ w) +
∫ w

0
µe−µx

∑
s′∈succM (s)

P(s, s′) · vk−1(s′, t+ x)dx

= e−µw · inf
w′≥0,s′∈succe(s)

(
e−µw

′
· vk−1(s′, t+ w + w′) +A(w′)

)
+A(w)

= inf
w′≥0,s′∈succe(s)

(
e−µ(w+w′) · vk−1(s′, t+ w + w′) + +A(w + w′)

)
.

Hence, we again obtain

vk,n(s, t) = min{ min
s′∈succe(s)

vk−1(s′, t), inf
w>0

vρwk,n(s, t)}

= inf
w≥0

inf
w′≥0,s′∈succe(s)

(
e−µ(w+w′) · vk−1(s′, t+ w + w′) +A(w + w′)

)
= inf

w≥0,s′∈succe(s)

(
e−µ(w) · vk−1(s′, t+ w) +A(w)

)
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= min
w≥0,s′∈succe(s)

(
e−µ(w) · vk−1(s′, t+ w) +A(w)

)
= Ωk+1(f0)(s, t)

Now we show that it suffices to consider strategies from
⋃∞
n=0 Πn. Let π be any non-

Zeno strategy, i.e. for any σ we have that Pσ,πG,s [Z] = 0 where Z is the set of Zeno runs.
Then also Pσ,πG,s [X∞] = 0 where X∞ is the set of runs with infinite amount of self-loop
transitions before any non-self-loop transition. For any ε > 0 there must be an amount
of self-loop transitions k ∈ N0 such that Pσ,πG,s [Xk] ≤ ε. Hence, a strategy π′ ∈ Πk that
emulates π in first k self-loop transitions and then takes an arbitrary external transition
(and also emulates π in all following transitions) guarantees the same value as π up to
ε. Hence, limn→∞ vk,n = vk.
The function vk is again measurable and continuous on [0, T ].

J

I Lemma 11 (Tail bound on steps). For each ε > 0 there is k ∈ N such that for every pair
of strategies σ ∈ Σ, π ∈ Π we have

Pσ,πG (♦≤T (G) \ ♦≤T≤k (G)) ≤ ε

Proof. The proof is based on the Assumption 1 and on a tail bound for Poisson distribution.
From the Assumption 1, at least one transition on any cycle in Markovian. This provides
a bound on number of cycles that can be traversed: for any ε > 0 there is k′ such that
Pr[X > k′] < ε for a random variable X ∼ Pois(λ · T ) distributed according to the Poisson
distribution with rate λ · T .

Let n ≤ |S| be the maximal length of a cycle in the state space. We can set k := k′ · n
and get the desired property. J

I Lemma 12 (Value). The function v is a fixed point of the operator Ω.

Proof. From Lemma 11 we get that vk uniformly converges to v for k → ∞. From the
measurability of vk from Lemma 10 we immediately get that v is measurable. The fact that
v is a fixed point follows from the fact that for any s ∈ S and t ∈ R≥0 it holds

v(s, t) = lim
k→∞

vk(s, t) = lim
k→∞

vk+1(s, t)

which is from Lemma 10 and from continuity of Ω equal to

= lim
k→∞

Ω(vk)(s, t) = Ω( lim
k→∞

vk)(s, t)

= Ω(v)(s, t)

J

I Lemma 13. Let us fix δ > 0 such that T = δn for some n ∈ N. The function v satisfies
for any k ∈ N0 the following. First, v(s, kδ) = 0 if kδ > T or s ∈ Se, and v(s, kδ) = 1 if
s ∈ G and kδ ≤ T . Second, for any s 6∈ G and kδ ≤ T it holds

v(s, kδ) =



max
s′∈succτ (s)

v(s′, kδ) if s ∈ Sτ ,

A(δ) + e−µδ · v(s, (k + 1)δ) if s ∈ SM ,

min
(
A(δ) + e−µδ · v(s, (k + 1)δ),

min
s′∈succe(s),

0≤w≤δ

(
e−µw · v(s′, kδ + w) +A(w)

))
if s ∈ Se+M ,
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where µ = E(s) and A(u) =
∫ u

0 µe−µx ·
∑
s′′∈S P(s, s′′) · v(s′′, kδ + x)dx.

Proof. From Lemma 12 we immediately get that v(s, kδ) = 0 if kδ > T or s ∈ Se; v(s, kδ) =
1 if s ∈ G and kδ ≤ T ; and v(s, kδ) = maxs′∈succτ (s) v(s′, kδ) if s ∈ Sτ \G and kδ ≤ T . Now
let s ∈ SM \G and kδ ≤ T . It holds that

v(s, kδ) =
∫ T−t

0
µe−µx ·

∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x)dx

which can be rewritten by splitting the integral and further by substituting x+ δ for x as

= A(δ) +
∫ T−t

δ

µe−µx ·
∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x)dx

= A(δ) +
∫ T−t−δ

0
µe−µ(x+δ) ·

∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x+ δ)dx

= A(δ) + e−µδ ·
∫ T−t−δ

0
µe−µx ·

∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x+ δ)dx

= A(δ) + e−µδ · v(s, (k + 1) + δ)

Finally, for s ∈ Se+M \G and kδ ≤ T , it holds

v(s, kδ) = min
w≥0,s′∈succe(s)

(
e−µw · F (s′, t+ w) +A(w)

)
= min{ min

s′∈succe(s),w≥δ

(
e−µw · v(s′, kδ + w) +A(w)

)
,

min
s′∈succe(s),0≤w≤δ

(
e−µw · v(s′, kδ + w) +A(w)

)
}.

In the first line we can substitute w + δ for w and yield similarly to the previous case

= min{A(δ) + e−µδ · v(s, (k + 1)δ),
min

s′∈succe(s),0≤w≤δ

(
e−µw · v(s′, kδ + w) +A(w)

)
}. J

We say that a strategy ρ ∈ Σ ∪ Π is total time positional if for any two histories h =
s0t0 · · · tn−1sn and h′ = s′0t

′
0 · · · t′m−1s

′
m with sn = s′m and

∑
h =

∑
h′ it holds ρ(h) = ρ(h′).

We denote by ρ(s, t) the decision of a total time positional strategy ρ for any history h

with
∑

h = t that ends with state s. Furthermore, we say that a deterministic total time
positional strategy π of the player envis consistent if it satisfies the following implication.
Let s ∈ S and t ≤ T . If π(s, t) = w for w > 0, we have for any y < w that π(s, t+y) = w−y
and either the strategy waits beyond the bound T , i.e. t + w > T or it then chooses a
transition, i.e. π(s, t + w) = s′ for some s′ ∈ succe(s). For any deterministic total time
positional strategy σ of the player conwe say that it is consistent. For the following lemma,
let Σ′ and Π′ denote the set of consistent strategies.

I Lemma 14. Consistent strategies suffice for both players, i.e.

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π′

Pσ,πG [♦≤TG] = sup
σ∈Σ′

inf
π∈Π
Pσ,πG [♦≤TG].

Proof. Let us define a pair of consistent strategies σ∗ and π∗ using v as follows. Let us fix
an arbitrary linear order � over S. For any state s and total time t ∈ R≥0
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the strategy σ∗ chooses the minimal state s′ ∈ succτ (s) w.r.t. � out of those that
maximize v(s′, t), and an arbitrary state if succτ (s) = ∅;
the strategy π∗ is defined by the following rules. If succe(s) = ∅, π∗ chooses the delay
T + 1− t. Otherwise, let

(s′, w) = arg min
s′∈succe(s),w≥0

e−µw · v(s′, t+ w) +
∫ w

0
µe−µx ·

∑
s′′∈S

P(s, s′′) · v(s′′, t+ x)dx.

(1)

where the state s′ is minimal w.r.t. � if there are more states that minimize the equation
above. The strategy π∗ then chooses the state s′ if w = 0; and π∗ chooses the delay w
if w > 0.

Clearly, σ∗ and π∗ are total time positional and deterministic. By the Markov property of
the equation that π∗ minimizes, it is easy to show that π∗ is consistent.

Now, let ε > 0. We show that σ∗ and π∗ are ε-optimal. Observe that it suffices for
showing that both strategies are optimal. Indeed, it follows immediately since we fix ε

arbitrarily. Let σ(s,t) and π(s,t) denote some strategies that are (ε/2)-optimal w.r.t. the
value v(s, t). For any n > 0, we define strategies σn and πn as follows. Let h = s0t0 · · · tk−1sk
be a history.

We set σn(h) = σ∗(h) and πn(h) = π∗(h) if there are ≤ n non-self-loop transition in h

(i.e., σn and πn behave as σ∗ and π∗ in the first n steps, respectively).
Otherwise, we set σn(h) = σ(sm,t)(h′′) and πn(h) = π(sm,t)(h′′) where t =

∑
h′, h′ =

s0t0 · · · tm−1sm is the shortest prefix of h with n non-self-loop transitions, and h′′ =
smtm · · · tk−1sk be the remaining part of h (i.e., σn and πn then behave as an ε-optimal
strategy).

I Claim 15. For any n ∈ N0, any s ∈ S, and any t ∈ R≥0 it holds

inf
π∈Π
Pσn,πG,s [♦≤T−tG] ≥ v(s, t)− ε,

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] ≤ v(s, t) + ε.

Proof. By induction on n. The strategies σ0 and π0 behave directly as ε-optimal strategies
yielding the claim. Let n > 0. For t > T , s ∈ G or s ∈ Se, the claim is straightforward.
Otherwise:

If s ∈ Sτ , let s′ = σn(s). We get

inf
π∈Π
Pσn,πG,s [♦≤T−tG] = inf

π∈Π
Pσn−1,π
G,s′ [♦≤T−tG] ≥ v(s′, t)− ε = v(s, t)− ε,

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] = max

s′∈succτ (s)
sup
σ∈Σ
Pσ,πn−1
G,s′ [♦≤T−tG]

≥ max
s′∈succτ (s)

v(s′, t)− ε = v(s, t)− ε.

If s ∈∈ SM , let µ = E(s). We have

inf
π∈Π
Pσn,πG,s [♦≤T−tG] =

∫ T−t

0
µe−µx ·

∑
s′∈succM (s)

P(s, s′) inf
π∈Π
Pσn−1,π
G,s′ [♦≤T−t−xG]dx

≥
∫ T−t

0
µe−µx ·

∑
s′∈succM (s)

P(s, s′)(v(s′, t+ x)− ε)dx

≥v(s, t)− ε.

and analogously for supσ∈Σ P
σ,πn
G,s [♦≤T−tG].
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Finally, if s ∈∈ SM+e, let (s′, w) be the successor state and waiting time minimizing (1)
and µ = E(s). We have

sup
σ∈Σ
Pσ,πnG,s [♦≤T−tG] = e−µw sup

σ∈Σ
Pσ,πn−1
G,s′ [♦≤T−t−wG]+∫ w

0
µe−µx

∑
s′′∈S

P(s, s′′) sup
σ∈Σ
Pσ,πn−1
G,s′′ [♦≤T−t−xG]dx

≤ e−µw(v(s′, t+ w) + ε)+∫ w

0
µe−µx

∑
s′′∈S

P(s, s′′)(v(s′′, t+ x) + ε)dx

≤ v(s, t) + ε

For infπ∈Π Pσn,πG,s [♦≤T−tG], it does not depend on σn in the first step (analogously to
supσ∈Σ P

σ,πn
G,s [♦≤T−tG] for s ∈ Sτ ). Therefore, it can be easily shown by similar argu-

ments as in Lemma 10. J
We conclude the proof of the lemma by a simple observation. Notice that for any π ∈ Π

Pσn,πG [♦≤TG] = Pσn,πG [♦≤T≤nG]X] = Pσn,πG [♦≤T≤nG]+Pσn,πG [X] = Pσ
∗,π
G [♦≤T≤nG]+Pσn,πG [X]

where X = ♦≤TG \ ♦≤T≤nG. Since from Lemma 11, Pσn,πG [X] → 0 as n → ∞, we get that
Pσn,πG [♦≤TG]→ Pσ

∗,π
G [♦≤TG]. Hence, there is n such that

inf
π∈Π
Pσ
∗,π
G,s [♦≤TG] ≥ inf

π∈Π
Pσn,πG,s [♦≤TG]− ε/2 ≥ v(s0, t)− ε.

It proves that σ∗ is ε-optimal, and analogously that π∗ is ε-optimal, concluding the proof. J

A.4 Proof of Proposition 6
By Lemma 14 we can slightly abuse the notation and for the rest of the appendix denote by
Σ and Π the set of deterministic strategies.

Proposition 6. (∗) = (∗∗), i.e.

sup
σ∈S(C)

inf
E∈ENV

π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
= sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]

Proof. Firstly, we prove the inequality (∗) ≥ (∗∗). This amounts to showing that an arbi-
trary environment E can be “simulated” by the player envin the CE game. Formally, it is
sufficient to prove

∀σ ∈ Σ ∃σ′ ∈ S(C) ∀E ∈ ENV ∀π ∈ S(C(E), σ′) ∃πE ∈ Π :
PπC(E)

[
♦≤TGE

]
≥ Pσ,πEG

[
♦≤TG

]
(♥)

Note that every strategy σ of the player conis actually also a scheduler for C. Thus we set
σ′ := σ and then for every environment E and its scheduler π, we give a strategy πE of
the player envthat makes “equivalent” decisions as π in the “equivalent” history. We then
prove that πE guarantees the same value as π does.

The idea of the simulation is the following. Whenever π synchronizes on an external
action a, πE chooses a. Whenever E waits with a rate λ, πE chooses to wait, too. Here
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we use randomizing strategies so that we can combine all waiting times t ∈ R>0 with the
exponential distribution with rate λ. In other words, πE simulates the random waiting of
E using randomizing (which we can consider due to Lemma 14). One can view this kind
of randomizing strategies as strategies where the co-domain contains not only R>0 but also
exponential distributions and we will use this notation.

Let thus σ,E, π be arbitrary but fixed. In the following, we define πE through a function
WC : Histories(G) → Paths(C(E)) transforming the histories of the CE game into paths of
C(E), which πE uses to ask what π would do. Since E can have probabilistic branching, we
need to pick one of possibly more paths of C(E) corresponding to the history of the simulating
play in G. We will pick one where the future chances are the best for the environment,
i.e. worst for the time bounded reachability, hence WC for the “worst case”.

The functions πE and WC are defined inductively and only on the reachable histories;
one can define them arbitrarily elsewhere. We start with WC(sC0 ) := (sC0 , sE0 ). For history
h with WC(h) ending in (c1, e1), we first define what π does after a (possibly empty) se-
quence of internal steps in E. Formally, let n ∈ N be the greatest such that there is a
sequence (c1, e1), . . . , (cn, en) where π(WC(h)(c2, e2) · · · (ci, ei)) = (ci+1, ei+1) and ci = c1
and ei τ

↪→ ei+1 for i < n. If n = 1 then (c2, e2) · · · (cn, en) is empty. Depending on the type
of the transition between (cn, en) and (c, e) := π

(
WC(h)(c2, e2) · · · (cn, en)

)
, we define πE(h)

as follows:

If either cn a
↪→ c and en a

↪→ e for some a ∈ Act, /* external transition */
or cn τ

↪→ c and en = e /* internal transition in C */
then πE(h) := c.
The new history is then h′ = h 0 c and we set WC(h′) := WC(h)(c2, e2) · · · (cn, en)(c, e).
Else /* only Markovian transition(s) are enabled and π[σ] is thus ignored*/

if succM (en) = ∅ then πE(h) := T + 1; /* E is blocked */
the new history is then either longer than T if no Markovian transition from cn
occurs before T , or else a Markovian transition occurs after t still before T and we
set h′ = h t cM given by the respective cM ∈ succM (cn), and further WC(h′) :=
WC(h)(c2, e2), . . . , (cn, en)(cM , en);
else πE(h) := Exp(E(e)); /* E waits */
then either a Markovian transition c cM happens before t, in which case h′ and
WC(h′) are defined as in the previous case; or else pick arbitrary eM ∈ succM (en)
minimizing

PπC(E)

[
♦≤TGE

∣∣ WC(h′)
]

where h′ := h t cn and WC(h′) := WC(h)(c2, e2), . . . , (cn, en)(cn, eM ).

I Lemma 17. For every σ ∈ S(C), E ∈ ENV, π ∈ S(C(E), σ), we have

PπC(E)
[
♦≤TGE

]
≥ Pσ,πEG

[
♦≤TG

]
Proof. If there are no probabilistic choices in E then the values are the same. Indeed, the
only difference of the simulating probabilistic space to the original one is that whenever
there is a probabilistic choice, the environment is always “lucky”. Since the minimum of
elements is never greater than their affine combination, the result follows.

Formally, we proceed as follows.
Firstly, we define a measure PE,πG on infinite histories of G directly induced by E and

π. As opposed to πE , the probabilistic choices of the environment are reflected here. Let
RealStep : Paths(C(E)) → Histories(G) project all internal transitions of the environment
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out, i.e. it maps a run (c0, e0)t0(c1, e1)t1 · · · to a run c0 t0 · · · where each ci ti is omitted
whenever ci = ci−1 and ei−1

τ
↪→ ei. Then we define PE,πG := PπC(E) ◦ RealStep−1. Clearly, as

τ transitions take no time we have5

PπC(E)[♦≤TGE ] = PE,πG [♦≤TG]

Secondly, for i ∈ N0, consider the set Historiesi ⊆ Histories(G) of histories of length
i, i.e. after the ith step is taken. Let pi ∈ D(Historiesi) denote the transient probability
measure according to PE,π[σ]

G after i steps. Further let ri : Historiesi → [0, 1] be given by
ri(h) = PE,πG [♦≤TGE | h]. Clearly, as states of G are absorbing we have

PE,πG [♦≤TGE ] =
∫

ridpi

Thirdly, let qi ∈ D(Historiesi) be the transient probability measure according to Pσ,πEG
after the ith step is taken. A simple induction with case distinction from the definition of
πE reveals that ∫

ridpi ≥
∫

ridqi

Indeed, all but one case preserve equality. The only interesting case is the Markovian
transition in E. As the minimum of elements is never greater than their affine combination,
we obtain the desired inequality.

Finally, it remains to prove that

lim
i→∞

∫
ridqi = Pσ,πEG [♦≤TG]

i.e. that the gains of the gradual replacements of the strategy converge to the gain of the
limiting strategy. This follows from ri(h) being zero or one for each path h longer than T
only depending on the state at time T , and from the fact that the set of runs that never
exceed T is of zero measure due to Assumption 1. J

The previous lemma proves (♥) by which the proof of (∗) ≥ (∗∗) is concluded.
Secondly, we prove the inequality (∗∗) ≥ (∗). We can divide the proof in three steps: (a)

we show that in the CE game grid strategies are sufficient for both players; (b) this result
is further employed in showing that exponential strategies are sufficient for the player env;
furthermore, (c) any exponential strategy of the player envcan be straightforwardly simu-
lated by a specific environment and scheduler in the IMC. Let us first define the necessary
notions.

We say that a strategy is a grid strategy on a grid of size δ > 0 if
it decides only according to the current state and the integer k such that the total
time of the history belongs to the interval [kδ, (k + 1)δ), i.e. for any two histories h =
s0t0 . . . tn−1sn and h′ = s′0t

′
0 . . . t

′
m−1s

′
m with sn = s′m and

∑
h,
∑

h′ ∈ [kδ, (k + 1)δ) for
some k ∈ N0 we have σ(h) = σ(h′); and
it is either a strategy of the player conor it chooses waiting times only on the δ-grid, i.e.
for any history h = s0t0 . . . tnsn the strategy σ either chooses an action or a time step
tn+1 such that

∑
h + tn+1 = kδ for some k ∈ N.

5 Note that E and π[σ] do not induce any strategy that would copy the IMC behavior completely. For
this, one would need the notion of a strategy with a stochastic update, i.e. a strategy that can change
its “state” randomly and thus model where in E the original path currently is.
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Furthermore, for λ ∈ R we say that a strategy π of the player envis exponential with rate
λ if

it chooses to wait solely with the exponential distribution with rate λ;
for any history h = s0t0 . . . tnsn with n > 0, tn > 0, and sn 6= sn−1 it chooses to wait;
for other histories it behaves as a grid strategy for some δ > 0, i.e. we have σ(h) = σ(h′)
for any two histories h = s0t0 . . . tn−1sn and h′ = s′0t

′
0 . . . t

′
m−1s

′
m with

either n = m = 0 or tn−1 = t′m−1 = 0 or sn = sn−1 = s′m = s′m−1, and
/* the conditions above negated */

sn = s′m and
∑

h,
∑

h′ ∈ [kδ, (k + 1)δ) for some k ∈ N0. /* grid strategy */

Intuitively, a λ-exponential strategy cannot take an action right after a Markovian tran-
sition (resulting in sn 6= sn−1 and tn−1 > 0). The set of all grid strategies is denoted by Σ#
and Π#, the set of all λ-exponential strategies is denoted by Πλ.

I Lemma 18. Grid strategies are sufficient for both players, i.e.

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ#

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π#

Pσ,πG [♦≤TG]

Proof. The grid strategies closely correspond to the counting strategies in the discretized
game ∆. Therefore, we do the technical work on this lemma in Section A.8. Denoting the
three values by (1), (2), and (3), observe that (2) ≤ (1) and (1) ≤ (3) hold trivially. As
regards (1) ≤ (2), we denote by Π#,δ the set of grid strategies on a grid of size δ. Lemma 25
implies for any ε > 0 and any δ ≤ 2ε/(λ2T )

vδ(s0, 0) ≤ sup
σ∈Σ#,δ

inf
π∈Π
Pσ,πG [♦≤TG],

which combined with the first part of Lemma 27 results in

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] ≤ sup

σ∈Σ#,δ

inf
π∈Π
Pσ,πG [♦≤TG] + ε,

which proves the inequality by taking ε → 0. Similarly for (3) ≤ (1) because we have by
combining the second part of Lemma 27 with the first part of Lemma 25

sup
σ∈Σ

inf
π∈Π#

Pσ,πG [♦≤TG] ≤ sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] + ε. J

I Lemma 19. Exponential strategies for the player envare sufficient against grid strategies,
i.e. for any grid strategy σ we have

inf
π∈Π#

Pσ,πG [♦≤TG] = inf
λ∈R>0,πλ∈Πλ

Pσ,πλG [♦≤TG]

Proof. We fix arbitrary strategies σ ∈ Σ# and π ∈ Π# of the same grid size. We need to
find a sequence of strategies πλ for any λ such that

Pσ,πG [♦≤TG] ≥ lim
λ→∞

Pσ,πλG [♦≤TG].

For any λ > 0, we define πλ(h) for h = s0t0 · · · tn−1sn using π as follows. Intuitively, if
π chooses to wait for time t and then makes action a, the simulating strategy πλ repeatedly
waits for random time with exponential distribution until the sum of the random waiting
times exceeds t and then makes action a; the larger the rate λ, the more precise is this
simulation. Notice that the history of the play with strategy πλ contains a lot of waiting
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steps that are not in the history of the play with strategy π. Therefore, we need a map-
ping destutter that removes these superfluous waiting steps. We define it inductively by
destutter(s0) = s0 and

destutter(h′ ts t′s′) =
{
destutter(h′ ts) t′s′ if s 6= s′; and
destutter(h′ ts) if s = s′.

Notice that the second case corresponds to the situation when the last step is the waiting
step of the strategy πλ or any self-loop transition.

Furthermore, let a′ be the first action taken by π at total time t′ for history destutter(h)
if no Markovian transition occurs (notice that strategy π may decide to wait subsequently
for several times before it chooses an action; a′ is the first action taken by π if none of the
waiting is interrupted by a Markovian transition). We finally set

πλ(h) =
{

Exp(λ) if either
∑

h < t′ or both tn−1 > 0 and sn 6= sn−1;
a′ if

∑
h ≥ t′ and either tn−1 = 0 or sn = sn−1.

where Exp(λ) denotes the exponential distribution with rate λ. Notice that the strategy πλ
is from definition λ-exponential.

We now define a set of runs Xλ in the game with πλ where the imprecision in the
simulation does not cause any difference with respect to the time bounded reachability. Let
δ > 0 be the grid size of σ and π. A run in the CE game with strategies σ, πλ belongs to
Xλ if for all k ∈ {0, 1, . . . , T/δ} we have that

no non-self-loop transition occurs at the total time neither in the interval [kδ, kδ+δ/
√
λ]

nor in the interval [(k + 1)δ − δ/
√
λ, (k + 1)δ].

the first transition after total time kδ is a self-loop transition and occurs in the interval
[kδ, kδ + δ/

√
λ];

The proof of the lemma is concluded by the following claim. J

I Claim 20. For λ→∞ we have

Pσ,πλG [Xλ] → 1 (2)
Pσ,πλG [♦≤TG | Xλ] → Pσ,πG [♦≤TG] (3)

Proof. As regards (2), we deal with the conditions on runs in Xλ one by one. First, notice
that the Lebesgue measure of all the forbidden intervals tend to 0 as λ goes to infinity; hence,
the probability of a Markovian transition occurring in any such interval tends to 0. Second,
we can underestimate the probability of Xλ by considering only the waiting transitions of
πλ as self-loops. The probability that the waiting transition occurs in each such interval can
be bounded by (

1− eλ·δ/
√
λ
)T/δ

=
(

1− e
√
λδ
)T/δ

→ 1

since T/δ is constant and e
√
λδ → 0 as λ→∞.

As regards (3), notice that the delay caused by the exponential simulation does not
qualitatively change the behavior. Namely, under the condition of Xλ,

any transition made by π is simulated by πλ at most δ/
√
λ later; the player concannot

interfere meanwhile because if there is an external transition enabled, there cannot be
any internal transitions enabled by the Assumption 2;
also no Markovian transition occurs meanwhile;
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the decision of the players after the delayed transition are the same as in the original
play, since both players have grid strategies.

The change is only quantitative because we limit the Markovian transitions, but this change
tends to zero as the probability of the set we condition by goes to one. J

I Lemma 21. An exponential strategy in G can be simulated by an IMC environment of C,
i.e. for any scheduler σ we have

inf
λ∈R>0,π′∈Πλ

Pσ
′,π′

G′ [♦≤TG] ≥ inf
E∈ENV,π∈S(C(E))

Pπ[σ]
C(E)[♦

≤TGE ]

Proof. We fix an arbitrary scheduler σ and use the same strategy σ (observe that a scheduler
has the same type as a strategy of the player con). Furthermore, we fix an arbitrary λ ∈ R>0
and a λ-exponential strategy π′. We choose E to be a two-state environment with rate λ
depicted below and set π to be strategy that in a state (c, ed) chooses the transition to (c, ew)
if π′ chooses exponential waiting, and that chooses the transition to (c′, ed) if π′ chooses c′
(as a result of a synchronization over some external action a, taking the self-loop in E).

ed ew

Act

τ

λ

Formally, for a path p = (c0, e0) t0 (c1, e1) t1 · · · tn−1 (cn, en)
where each ci is the state of the IMC component and each ei ∈
{ed, ew} is the state of E, we set

π(p) = (cn, ew) if π′(proj1(p)) chooses exponential waiting,
π(p) = (cn+1, ed) if π′(proj1(p)) chooses cn+1 ∈ succe(cn)

where proj1 : Paths(C(Eλ)) → Histories(G′) is the first projection of the path (leaving out
the states of the environment).

Again, it remains to show that

Pσ
′,π′

G′ [♦≤TG] = Pπ[σ]
C(E)[♦

≤TGE ]

The key observation is that any path ending with a state of the form (c, ew) where the
scheduler π cannot do anything is mapped by proj1 on a history where the λ-exponential
strategy must wait. Furthermore, in all other situations the decisions of the schedulers and
strategies coincide w.r.t. proj1. Again, it is easy to see that for any measurable set of runs
X in G we have Pσ

′,π′

G [X] = Pσ,πC(Eλ)[proj
−1
1 (X)]. J

Finally, the proof of (∗∗) ≥ (∗) follows easily from Lemmata 18, 19, and 21 since we have

sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ#

inf
π∈Π#

Pσ,πG [♦≤TG] = sup
σ∈Σ#

inf
λ∈R>0,πλ∈Πλ

Pσ,πλG [♦≤TG]

≥ sup
σ∈Σ

inf
E∈ENV,π∈S(C(E))

Pπ[σ]
C(E)[♦

≤TGE ] J

A.5 Value preservation under uniformization
We say that a game G is uniform if all the states with Markovian transitions have the
maximal rate λ, i.e. every s ∈ SM ∪ Se+M satisfies E(s) = λ. After showing that the value
of C(E) equals the value of G we define a uniformized game G′ with value equal to G.

Recall that we assume that there are no Markovian self-loops in G. The game G′ is
obtained by adding to each state s ∈ SM ∪ Se+M with E(s) < λ a Markovian self-loop with
rate λ−E(s) yielding an uniform game. The game now contains Markovian self-loops which
is not an issue for the following sections.
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I Lemma 22.
sup
σ∈Σ

inf
π∈Π
Pσ,πG [♦≤TG] = sup

σ∈Σ
inf
π∈Π
Pσ,πG′ [♦≤TG]

Proof. Recall that thanks to Lemma 14 it is sufficient to consider consistent strategies. For
the rest of the proof, let Σ and Π denote consistent strategies. Intuitively, the values equal
since the decision of same strategies in both games are completely the same (thanks to the
consistency) and the resulting Markov chains have the same probabilities to reach the target
by standard arguments.

More formally, we denote by E and P the total rate function and the probability matrix
of G′, by E− and P− the total rate function and the probability matrix of G. It is sufficient
to show that the k-step values coincide in the two games.

For k = 0 it is the same as in Lemma 10. Let k > 0 and s ∈ SM . We proceed by
nested induction on the count n of Markovian self-loops that occur before any non-self-loop
transition. We denote by v′k,n(s, t) the k-step value of G′ conditioned by the event that at
most n Markovian self-loops precede the first non-self-loop transition; for n = 0, we have
directly from the definition of the Markov chain .

v′k,0(s, t) = sup
σ∈Σ

inf
π∈Π

∫ ∞
0

E−(s) · e−E−(s)x ·
∑

s′∈succM (s)

P−(s, s′) · Pσ,πG′,s x s′ [♦
≤T−t−x
≤k−1 G]dx

=
∫ ∞

0
E−(s) · e−E−(s)x ·

∑
s′∈succM (s)

P−(s, s′) · sup
σ∈Σ

inf
π∈Π
Pσ,πG′,s x s′ [♦

≤T−t−x
≤k−1 G]dx

=
∫ ∞

0
E−(s) · e−E−(s)x ·

∑
s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x)dx

=
∫ T−t

0
E−(s) · e−E−(s)x ·

∑
s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x)dx

= vk(s, t).

For n > 0, we have

v′k,n(s, t) = sup
σ∈Σ

inf
π∈Π

∫ ∞
0

E(s) · e−E(s)x ·
( ∑
s′∈succM (s),s′ 6=s

P(s, s′) · Pσ,πG′,s x s′ [♦
≤T−t−x
≤k−1 G]

+ P(s, s) · Pσ,πG′,s x s[♦
≤T−t−x
≤k G]

)
dx,

=
∫ ∞

0
E(s) · e−E(s)x ·

∑
s′∈succM (s),s′ 6=s

P(s, s′) · vk−1(s′, t+ x)dx +

∫ ∞
0

E(s) · e−E(s)x ·P(s, s) · v′k,n−1(s, t+ x)dx.

By the induction hypothesis, v′k,n−1(s, t+ x) = vk(s, t+ x); hence,

=
∫ ∞

0
E(s) · e−E(s)x ·

∑
s′∈succM (s)

P−(s, s′) · E−(s)
E(s) · vk−1(s′, t+ x)dx +

∫ ∞
0

E(s) · e−E(s)x ·P(s, s)·∫ ∞
0

E−(s) · e−E−(s)y ·
∑

s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x+ y)dy

 dx.
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Since the density function of the convolution of two exponential distributions with rates
E(s) and E−(s) equals E(s) ·E−(s) · (e−E−(s)/ξ − e−E(s)/ξ) where ξ = E(s)−E−(s) is the
rate of the self-loop transition, and since P(s, s) ·E(s) = ξ, we have

=
∫ ∞

0
E−(s) · e−E(s)x ·

∑
s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x)dx +

∫ ∞
0

E−(s) ·
(
e−E−(s)x − e−E(s)x

)
·

∑
s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x)dx

=
∫ ∞

0
E−(s) · e−E−(s)x ·

∑
s′∈succM (s)

P−(s, s′) · vk−1(s′, t+ x)dx

= vk(s, t).

This proves that vk(s, t) = v′k(s, t) since v′k,n(s, t)→ v′k(s, t) as n→∞.
For s ∈ Se+M it is similar (only more technical). Let w we the delay chosen by a strategy

π in state s. Until leaving s or until time w, the system behaves again as a CTMC (thanks
to the consistency of π), yielding again vk(s, t) = v′k(s, t) for each n ∈ N0. J

Thanks to this value preservation, we will assume in the following sections that G is
uniform (and may contain Markovian self-loops). We will denote all rates by λ.

A.6 Definition of the discrete game

Let us fix a discretization step δ > 0 that divides the time bound T into k ∈ N pieces of
equal length, i.e. T = k ·δ. We construct a discrete game ∆ = (V, 7→, (V�, V♦, V©), P rob, v0)
for two players � and ♦, who have antagonistic objectives, and a random player ©. The
game is played on a finite graph with vertices V and edges 7→. The vertices are assigned to
players according to the partitioning V� ∪ V♦ ∪ V© = V , i.e. s is assigned to � if s ∈ V�,
where � ∈ {�,♦,©}. A play starts in the initial vertex v0 and moves step by step from
vertex to vertex forming an infinite sequence v0v1v2 · · · , called a run. In each vertex vi the
assigned player chooses a successor vi+1 such that vi 7→ vi+1. The player © chooses the
successor randomly according to the fixed distribution Prob(vi), the players � and ♦ choose
according to their strategies. In our setting, strategy is a function that assigns to each finite
path v0 · · · vi a successor vertex vi+1. A pair of such strategies σ ∈ Σ∆ and π ∈ Π∆ of
respective players � and ♦ and a vertex v determine a probability measure Pσ,π∆,v over the
measurable space of all runs such that the play is started in vertex v. For a formal definition,
see, e.g., [17].

Formally, the set of vertices is V = S ∪ {s̄ | s ∈ S ∧ succe(s) 6= ∅}. The initial vertex
is v0 = s0. The partitioning (V�, V♦, V©) and the transition function 7→ are constructed as
follows.

(i) For each s ∈ Sτ , we set s ∈ V� and s 7→ s′ for s′ ∈ succτ (s).
(ii) For each s ∈ SM , we set s ∈ V© and s 7→ s′ for s′ ∈ succM (s) ∪ {s}.
(iii) For each s ∈ Se+M , we set s ∈ V♦, s 7→ s′ for s′ ∈ succe(s) ∪ {ŝ}, ŝ ∈ V©, ŝ 7→ s′ for

s′ ∈ succM (s) ∪ {s}.
(iv) For each s ∈ Se, we set s ∈ V♦, s 7→ s′ for s′ ∈ succe(s) ∪ {ŝ}, ŝ ∈ V©, ŝ 7→ s.

The distribution Prob choosing the successors in the states of V© is set as follows.
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P (s,
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1 − p

s ∈ Se

s
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a

b
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s1

s2

1

p = 1 − e−λ·δ

Figure 2 Four gadgets for transforming a CE game into a discrete game. The upper part shows
types of states in the CE game, the lower part shows corresponding gadgets in the discrete game.
In the lower part, the square-shaped vertices belong to player �, the diamond-shaped vertices to
player ♦ and the circle-shaped vertices to player ©.

For each t equal to s of item (ii) or ŝ of item (iii), and t′ such that t 7→ t′, we set

Prob(t, t′) =
{

(1− e−λ·δ) ·P(t, t′) if t 6= t′

(1− e−λ·δ) ·P(t, t) + e−λ)·δ if t = t′.

For each s̄ of item (iv), we set Prob(s̄, s) = 1.

A.7 Value in the discrete game
Recall that each discrete step from a vertex in V© intuitively “takes” time δ(= T/N) whereas
each step from vertex in V�∪V♦ “takes” zero time. The winning condition is the step-bounded
reachability of the set of vertices G in up to N steps where only the steps from the vertices
V© are counted for this limit. Formally,

♦#b≤NG = {v0v1 · · · | ∃n (vn ∈ G and #b(v0 · · · vn−1) ≤ N)}

where #b(v0 · · · vn−1) = |{ i | 0 ≤ i < n, vi ∈ V©}|. Further, let us recall that we are
interested in the lower value of this game

sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆
[
♦#b≤NG] (∗ ∗ ∗)

Finally, recall that we say that a strategy is counting if it only considers the last vertex and
the current count #b. We may view it as a function V ×{0, . . . , N} → V since it is irrelevant
what it does after more than N steps.

Observe that the value in game ∆ is equivalent to the value in the following game ∆′
with standard step-bounded reachability objective. In ∆′ we enhance the state space with
a counter 0 ≤ k ≤ N representing the count ♦#b≤N of steps from random vertices, and
by introducing a new sink (non-goal) state s which represents counting above N . Indeed,
it is sufficient to consider reachability up to |S| · N steps since from Assumption 1 there
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cannot be more than |S| steps without a Markovian transition, i.e. without increasing the
counter k. Notice that in discrete reachability games it is sufficient to consider memoryless
deterministic strategies [17]. Furthermore, notice that memoryless deterministic strategies
in ∆′ correspond bijectively to counting deterministic strategies in ∆ (observe that we
actually defined strategies to be deterministic in ∆ which is now justified by this bijection).
Finally, notice that the game ∆′ is acyclic (except for the sink state s where the value is
trivially 0) which allows to compute the value and the optimal memoryless deterministic
by straightforward (|S| · N)-fold value iteration in polynomial time as summarized by the
following lemma.

Lemma 7. There are counting strategies optimal in (∗ ∗ ∗). Moreover, they can be
computed together with (∗ ∗ ∗) in time O(N |V |2).

Similarly to v, we now need to characterize the value in the discrete game ∆ constructed
for a given δ. Let

vδ(s, k) = sup
σ∈Σ∆

inf
π∈Π∆

Pσ,π∆,s
[
♦#b≤N−kG]

denote the value when starting in vertex s with remaining N − k random steps (or equiva-
lently, the value in ∆′ from the vertex (s, k)). The following characterization is straightfor-
ward from the definition of ∆ and ∆′ and from the discussion above.

I Lemma 24. The function vδ satisfies for any k ∈ N0 and s ∈ S the following. First,
vδ(s, k) = 0 if k > N or s ∈ Se, and v(s, k) = 1 if s ∈ G and k ≤ N . Second, for any s 6∈ G
and k < N it holds

vδ(s, k) =


max

s′∈succτ (s)
vδ(s′, k) if s ∈ Sτ ,

B + e−λδ · vδ(s, k + 1) if s ∈ SM ,

min
(
B + e−λδ · vδ(s, k + 1), min

s′∈succe(s)
vδ(s′, kδ)

)
if s ∈ Se+M ,

where B = (1− e−λδ) ·
∑
s′′∈S P(s, s′′) · vδ(s′′, k + 1).

A.8 Relating (∗∗) and (∗ ∗ ∗)
Some parts of proofs in this section are also inspired by [28]. Recall that we assume that
G is uniform thanks to Lemma 22. Further, let us recall how a scheduler σ in the IMC C
is defined using a counting optimal strategy σ in the discrete game ∆ constructed for some
error ε > 0.

For σ : V × {0, . . . , N} → V , we have for any p = s0 t0 · · · sn−1 tn−1 sn

σ(p) = σ(sn, d(t0 + . . .+ tn−1)/δe).

Since a scheduler in C is also a strategy of the player conin the CE game G, we use the same
symbol σ also in the CE game setting.

I Lemma 25. For any δ > 0, s ∈ S and any 0 ≤ k ≤ N we have

vδ(s, k) ≤ v(s, kδ) (4)

The strategy σ guarantees in G at least as much as the value in ∆, i.e.

vδ(s, k) ≤ inf
π∈Π
Pσ,πG,s

[
♦≤T−kδG

]
(5)
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Proof. We prove it by backwards induction on k relying heavily on the value characteri-
zations in Lemmata 13 and 24. For k = N , (4) is immediate from Lemmata 13 and 24.
Furthermore, any strategy σ satisfies (5). Let us fix 0 ≤ k < N .

For s ∈ G ∪ Se, (4) is immediate from Lemmata 13 and 24 and again, any strategy σ
satisfies (5). For the following, we assume s 6∈ G.

For s ∈ SM , first observe that the function Pσ,πG,s
[
♦≤T−xG

]
is monotonous w.r.t. x

for any strategies σ ∈ Σ, π ∈ Π and any starting state s ∈ S; and thus v(s, ·) is also
monotonous by definition. We get (4) by replacing v(s′′, (k + 1)δ) for v(s′′, kδ + x) and
applying the induction hypothesis

v(s, kδ) =
∫ δ

0
λe−λx ·

∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x)dx + e−λδ · v(s, (k + 1)δ)

≥ (1− e−λδ) ·
∑
s′′∈S

P(s, s′′) · v(s′′, (k + 1)δ) + e−λδ · v(s, (k + 1)δ)

≥ (1− e−λδ) ·
∑
s′′∈S

P(s, s′′) · vδ(s′′, k + 1) + e−λδ · vδ(s, k + 1)

= vδ(s, k).

As regards (5), σ does not guarantee v(s′′, kδ + x) in state s′′ and elapsed time kδ + x

because its possible decision σ(s′′, dkδ+xe) may not be optimal for the elapsed time kδ+x.
Nevertheless, again from monotonicity of Pσ,πG,s

[
♦≤T−xG

]
and from the induction hypothesis,

σ guarantees there at least vδ(s′′, (k+1)). From the definition of Pσ,πG,s , σ guarantees in state
s and elapsed time kδ at least∫ δ

0
λe−λx ·

∑
s′′∈S

P(s, s′′) · vδ(s′′, (k + 1)δ)dx + e−λδ · vδ(s, (k + 1)δ) = vδ(s, k).

Now we deal with the states where potentially no time is spent, i.e. s ∈ Se+M ∪ Sτ . For
these states, we need deal with the value for all elapsed times not only for multiples of δ.
We define

v↓(s, kδ + w) =


maxs′∈succτ (s) v↓(s′, kδ + w) if s ∈ Sτ
C(s, w) if s ∈ SM
min{C(s, w),mins′∈succe(s) v↓(s′, kδ + w)} if s ∈ Se+M

where C(s, w) = e−λ(δ−w)vδ(s, k+ 1) + (1− e−λ(δ−w))
∑
s′′∈S P(s, s′′)vδ(s′′, k+ 1). We need

the following claim in order to prove (4) and (5).
I Claim 26. For any 0 ≤ w ≤ δ it holds v(s, kδ + w) ≥ v↓(s, kδ + w).
We prove the claim as well as (4) and (5) by a nested induction on the length n of the
longest path via internal and external transitions to a state in SM ∪ Se ∪G. Such length is
bounded for any state by Assumption 1. For n = 0, i.e. for s ∈ SM , we already discussed
(4) and (5), the claim can be obtained by similar arguments as above and as in Lemma 13.
Now let n > 0.

For s ∈ Sτ , (4) is easy from Lemmata 13 and 24. Furthermore, the strategy σ which
takes any transition that maximizes the value vδ(s, kδ) satisfies (5). Furthermore, the
claim can be obtained by similar arguments as in Lemma 13.
Finally, for s ∈ Se+M it suffices to prove the claim. Indeed, (5) is trivial for s ∈ Se+M
from the induction hypothesis as σ is not involved in the first step. Furthermore, from
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the claim we obtain (4) by setting w = 0 and by observing that v↓(s, kδ) = vδ(s, k) by
definition,

v(s, kδ) ≥ min{C(s, 0), min
s′∈succe(s)

v↓(s′, kδ)} = min{C(s, 0), min
s′∈succe(s)

vδ(s′, k)} = vδ(s, k).

As regards the claim, observe that we can obtain by similar arguments as in Lemma 13

v(s, kδ + w) = min{A(δ − w) + e−λ(δ−w) · v(s, (k + 1)δ), (6)

min
s′∈succe(s),
0≤w′≤δ−w

(
e−λw

′
· v(s′, kδ + w + w′) +A(w′)

)
} (7)

We prove the claim by showing that (6) ≥ v↓(s, kδ + w) and (7) ≥ v↓(s, kδ + w). First,

(6) =
∫ δ−w

0
λe−λx ·

∑
s′′∈S

P(s, s′′) · v(s′′, kδ + x)dx + e−λ(δ−w) · v(s, (k + 1)δ)

≥ (1− e−λ(δ−w)) ·
∑
s′′∈S

P(s, s′′) · v(s′′, (k + 1)δ) + e−λ(δ−w) · v(s, (k + 1)δ)

≥ (1− e−λ(δ−w)) ·
∑
s′′∈S

P(s, s′′) · vδ(s′′, k + 1) + e−λ(δ−w) · vδ(s, k + 1)

= C(s, w) ≥ v↓(s, kδ + w).

Let us focus on (7). We fix s′ ∈ succe(s) and search for the minimal w. First, we deal
with Markovian successor s′ ∈ SM . It holds

min
0≤w′≤δ−w

(
e−λw

′
· v(s′, kδ + w + w′) +A(w′)

)
(?)

≥ min
0≤w′≤δ−w

(
e−λw

′
· v↓(s′, kδ + w + w′) +A(w′)

)
= min

0≤w′≤δ−w

(
e−λw

′
· C(s′, w + w′) +A(w′)

)
≥ min

0≤w′≤δ−w

(
e−λw

′
·

(
e−λ(δ−w−w′)vδ(s′, k + 1) + (1− e−λ(δ−w−w′))

∑
s′′∈S

P(s′, s′′)vδ(s′′, k + 1)
)

+ (1− e−λw
′
)
∑
s′′∈S

P(s, s′′)vδ(s′′, k + 1)
)

= e−λ(δ−w)

(
vδ(s′, k + 1)−

∑
s′′∈S

P(s′, s′′)vδ(s′′, k + 1)
)

+

min
0≤w′≤δ−w

(
e−λw

′ ∑
s′′∈S

P(s′, s′′)vδ(s′′, k + 1) + (1− e−λw
′
)
∑
s′′∈S

P(s, s′′)vδ(s′′, k + 1)
)
.

Now comes the crucial observation of the proof: the formula above is minimized either
for w′ = 0 or for w′ = δ − w because of its linearity. By setting w′ = 0, we get

e−λ(δ−w)vδ(s′, k + 1) + (1− e−λ(δ−w))
∑
s′′∈S

P(s′, s′′)vδ(s′′, k + 1) = C(s′, w).

By setting w′ = δ − w and from the definition of vδ, we get

e−λ(δ−w)vδ(s′, k + 1) + (1− e−λ(δ−w))
∑
s′′∈S

P(s, s′′)vδ(s′′, k + 1)
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≥ e−λ(δ−w)vδ(s, k + 1) + (1− e−λ(δ−w))
∑
s′′∈S

P(s, s′′)vδ(s′′, k + 1) = C(s, w).

Now, we consider successor s′ ∈ Se+M . It holds

(?) ≥ min
0≤w′≤δ−w

(
e−λw

′
· v↓(s′, kδ + w + w′) +A(w′)

)

= min
0≤w′≤δ−w

(
e−λw

′
·min

{
C(s′, w + w′), min

s′′∈succe(s′)
v↓(s′′, kδ + w + w′)

}
+A(w′)

)
.

Observe, that similarly for s′ ∈ Sτ , we can obtain

(?) ≥ min
0≤w′≤δ−w

(
e−λw

′
· max
s′′∈succτ (s′)

v↓(s′′, kδ + w + w′) +A(w′)
)
.

For both the cases s′ ∈ Sτ ∪ Se+M , we get by unraveling the internal and external
transitions of v↓ according to definition

= min
0≤w′≤δ−w

(
e−λw

′
· minimaxs’
s′′∈SM∪Se+M

C(s′′, w + w′) +A(w′)
)

where minimaxs’ is an operator that chooses a state with Markovian transitions that is
reachable from s′ (where s′ is also reachable from s′) that is the most suitable for both
players. Technically, it is a sequence of min and max operators that are combined accord-
ing to the transition structure of G. Similarly to the previous case, it is easy to show that
for any fixed s′′ ∈ SM ∪ Se+M it holds min0≤w′≤δ−w

(
e−λw

′ · C(s′′, w + w′) +A(w′)
)
≥

min{C(s′′, w), C(s, w)}. To sum up all the cases,

(7) ≥ min
s′∈succe(s)

min
{
C(s, w), minimaxs’

s′′∈SM∪Se+M
C(s′′, w)

}
= min

{
C(s, w), minimaxs

s′′∈SM∪Se+M
C(s′′, w)

}
,

which is by considering only the first “decision” in minimaxs again

= min{C(s, w), min
s′∈succe(s)

v↓(s′, kδ + w)} = v↓(s, kδ + w). J

In the following lemma we denote by Π#,δ the set of grid strategies on a grid of size δ.

I Lemma 27. For any ε > 0, δ ≤ 2ε/(λ2T ), s ∈ S and any k ∈ N0 we have

v(s, kδ) ≤ vδ(s, k) + ε · T − kδ
T

(8)

sup
σ∈Σ

inf
π∈Π#,δ

Pσ,πG,s
[
♦≤T−kδG

]
≤ vδ(s, k) + ε · T − kδ

T
. (9)

Proof. Again, we prove it by backwards induction on k. For k = N , (8) is immediate
from Lemmata 13 and 24. Let us fix 0 ≤ k < N . For s ∈ G ∪ Se, (8) is immediate from
Lemmata 13 and 24. Observe that in these two situations, it is easy to derive (9) by very
similar arguments as in Lemma 13. For the following, we assume s 6∈ G.

For s ∈ SM we need to analyze first, what is the probability that two or more Markovian
transitions are taken in the interval [0, δ]. Let us denote by Runs#[0,δ]>1 the set of runs
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where more than one Markovian transition occurs in the first δ time units. Furthermore, we
denote by ♦≤T#[0,δ]≤1G = ♦≤TG \Runs#[0,δ]>1 and ♦≤T#[0,δ]>1G = ♦≤TG ∩Runs#[0,δ]>1. Next,
we have

v(s, kδ) = sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδG

]
= sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδ#[0,δ]≤1G ] ♦

≤T−kδ
#[0,δ]>1G

]
= sup
σ∈Σ

inf
π∈Π

(
Pσ,πG,(s,kδ)

[
♦≤T−kδ#[0,δ]≤1G

]
+ Pσ,πG,s

[
♦≤T−kδ#[0,δ]>1G

])
≤ sup
σ∈Σ

inf
π∈Π

(
Pσ,πG,s

[
♦≤T−kδ#[0,δ]≤1G

]
+ Pσ,πG,s

[
Runs#[0,δ]>1

])
= sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T−kδ#[0,δ]≤1G

]
+ Pσ

∗,π∗

G,s
[
Runs#[0,δ]>1

]
where σ∗ and π∗ are arbitrary strategies. Indeed, notice that strategies in G have no influence
on the frequency of occurrence of Markovian transitions.

≤ sup
σ∈Σ

inf
π∈Π
Pσ,πG,s

[
♦≤T#[0,δ]≤1G

]
︸ ︷︷ ︸

v−(s,kδ)

+(λδ)2

2

which follows from the properties of the Poisson distribution with parameter λδ using the
very same arguments as in [28, Lemma 6.2]. Finally, by δ ≤ 2ε/(λ2T ),

≤ v−(s, kδ) + ε · δ
T

(10)

This observation allows us to focus on paths where at most one Markovian transition occurs.

v−(s, kδ) =
∫ δ

0
λe−λx ·

∑
s′′∈S

P(s, s′′) · κ(s′′, δ − x)v/δ−x(s′′, kδ + x)dx + e−λδ · v(s, (k + 1)δ)

where κ(s′′, δ−x) is the probability that (after the first Markovian transition occurs at time
x), no other Markovian transition occurs in the remaining time δ− x; and v/δ−x(s′′, kδ+ x)
denotes the value in configuration (s′′, kδ + x) with no Markovian transition occurring in
the next δ − x time units. Now we show

v/δ−x(s′′, kδ + x) ≤ v(s′′, (k + 1)δ) for any 0 ≤ x ≤ δ. (11)

We proceed by nested induction on the length j of the longest path via internal and
external transitions to a state in SM ∪ Se ∪G. Such length is bounded for any state by the
Assumption 1.

Let j = 0. If s′′ ∈ SM , it is clear since the game waits there for sure until time (k+ 1)δ.
If s′′ ∈ G, both values equal to 1, and if s′′ ∈ Se, the strategy that waits until time (k+ 1)δ
gains value v(s′′, (k + 1)δ) = 0 which is optimal.

Assume j > 0,
if s′′ ∈ Sτ , the player chooses successor state s′′′ with maximal v/δ−x(s′′′, kδ + x), re-
spectively. Thus, for such s′′′, v/δ−x(s′′, kδ + x) equals v/δ−x(s′′′, kδ + x) for which we
can use the induction hypothesis;
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if s′′ ∈ Se+M , the value equals

min

v(s′′, (k + 1)δ), min
s′′′∈succe(s′′),
w∈[0,δ−x]

v/δ−x−w(s′′′, kδ + x+ w)

 ≤ v(s′′, (k + 1)δ).

By (10), (11) and since 0 ≤ κ ≤ 1, we get

v−(s, kδ) ≤
∫ δ

0
λe−λx ·

∑
s′′∈S

P(s, s′′) · v(s′′, (k + 1)δ)dx + e−λδ · v(s, (k + 1)δ)

and further by integrating the density and by applying the induction hypothesis

≤(1− e−λδ) ·
∑
s′′∈S

P(s, s′′) · vδ(s′′, k + 1) + e−λδ · vδ(s, k + 1) + ε · T − (k + 1)δ
T

≤ vδ(s, k) + ε · T − (k + 1)δ
T

which in total yields the sought form v(s, kδ) ≤ vδ(s, k) + ε · T−kδT . Similarly, as regards
(9), we can denote v#(s, kδ) := supσ∈Σ infπ∈Π#,δ P

σ,π
G,s
[
♦≤T−kδG

]
, and analogously define

v#− and v#/δ−x. By similar arguments it can be shown that v#(s, kδ) ≤ v#−(s, kδ) + εδ/T ,
v#/δ−x(s′′, kδ + x) ≤ v#(s′′, (k + 1)δ) for any 0 ≤ x ≤ δ (observe that a grid strategy that
for any x chooses to wait until the end of the interval guarantees the value v#(s′′, (k+ 1)δ)).
From these inequalities it is again easy to derive that v#(s, kδ) ≤ vδ(s, k) + ε · T−kδT .

Now, let us proceed to the states where potentially no time is spent, i.e. s ∈ Se+M ∪Sτ .
Again, we need to use a nested induction on the length of the longest path to a state in
SM ∪ Se ∪G. For length 0, we have already proven it. Assume length > 0,

for s ∈ Sτ we have

v(s, kδ) = max
s′∈succτ (s)

v(s′, kδ)

≤ max
s′∈succτ (s)

(
vδ(s′, kδ) + ε · T − kδ

T

)
= vδ(s, kδ) + ε · T − kδ

T
;

By similar arguments as in Lemma 13 it is easy to see that v#(s, kδ) = maxs′∈succτ (s) v#(s′, kδ)
and thus also v#(s, kδ) ≤ vδ(s, kδ) + ε(T − kδ)/T .
for s ∈ Se+M we get

v(s, kδ) = min

A(δ) + e−λδ · v(s, (k + 1)δ), min
s′∈succe(s),

0≤w<δ

(
e−λw · v(s′, kδ + w) +A(w)

)
which is surely increased by restricting the choice only to w ∈ {0, δ} so that we obtain
v(s, kδ) ≤ v#(s, kδ); which is further increased by restricting the choice only to w ∈ {0},

v#(s, kδ) ≤min
(
A(δ) + e−λδ · v(s, (k + 1)δ), min

s′∈succe(s)
v(s′, kδ)

)
.

By the same arguments as for s ∈ SM we obtain

≤min
(
B + e−λδ · vδ(s, k + 1), min

s′∈succe(s)
vδ(s′, k)

)
+ ε · T − kδ

T
. J



36 Verification of Open Interactive Markov Chains

Theorem 8. For every approximation bound ε > 0 and discretization step δ ≤ ε/(λ2T )
where λ = maxs∈S E(s), the value (∗ ∗ ∗) induced by δ satisfies

(∗ ∗ ∗) ≤ (∗∗) ≤ (∗ ∗ ∗) + ε.

Proof. Straightforward, by putting s := s0 and k := 0 into Lemmata 25 and 27. J

Theorem 9. Let ε > 0, ∆ be a corresponding discrete game, and σ be induced by an
optimal counting strategy in ∆, then

(∗) ≤ inf
E∈ENV

π∈S(C(E),σ)

PπC(E)

[
♦≤TGE

]
+ ε

Proof. By combining Theorem 8 and Lemma 25 we get that

sup
σ∈Σ

inf
π∈Π
Pσ,πG

[
♦≤TG

]
≤ inf

π∈Π
Pσ,πG

[
♦≤TG

]
+ ε

and further by Proposition 6

sup
σ∈S(C)

inf
E∈IMC

π∈S(C(E),σ)

Pπ[σ]
C(E)

[
♦≤TGE

]
≤ inf

π∈Π
Pσ,πG

[
♦≤TG

]
+ ε.

Since the proof of Proposition 6 shows that for each strategy σ it holds

inf
π∈Π
Pσ,πG

[
♦≤TG

]
≤ inf

E∈IMC
π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
,

we can conclude the proof by

sup
σ∈S(C)

inf
E∈IMC

π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
≤ inf

E∈IMC
π∈S(C(E),σ)

PπC(E)
[
♦≤TGE

]
+ ε. J
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